Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.562468
Title: Communication centric platforms for future high data intensive applications
Author: Ahmad, Balal
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The notion of platform based design is considered as a viable solution to boost the design productivity by favouring reuse design methodology. With the scaling down of device feature size and scaling up of design complexity, throughput limitations, signal integrity and signal latency are becoming a bottleneck in future communication centric System-on-Chip (SoC) design. This has given birth to communication centric platform based designs. Development of heterogeneous multi-core architectures has caused the on-chip communication medium tailored for a specific application domain to deal with multidomain traffic patterns. This makes the current application specific communication centric platforms unsuitable for future SoC architectures. The work presented in this thesis, endeavours to explore the current communication media to establish the expectations from future on-chip interconnects. A novel communication centric platform based design flow is proposed, which consists of four communication centric platforms that are based on shared global bus, hierarchical bus, crossbars and a novel hybrid communication medium. Developed with a smart platform controller, the platforms support Open Core Protocol (OCP) socket standard, allowing cores to integrate in a plug and play fashion without the need to reprogram the pre-verified platforms. This drastically reduces the design time of SoC architectures. Each communication centric platform has different throughput, area and power characteristics, thus, depending on the design constraints, processing cores can be integrated to the most appropriate communication platform to realise the desired SoC architecture. A novel hybrid communication medium is also developed in this thesis, which combines the advantages of two different types of communication media in a single SoC architecture. The hybrid communication medium consists of crossbar matrix and shared bus medium . Simulation results and implementation of WiMAX receiver as a real-life example shows a 65% increase in data throughput than shared bus based communication medium, 13% decrease in area and 11% decrease in power than crossbar based communication medium. In order to automate the generation of SoC architectures with optimised communication architectures, a tool called SOCCAD (SoC Communication architecture development) is developed. Components needed for the realisation of the given application can be selected from the tool’s in-built library. Offering an optimised communication centric placement, the tool generates the complete SystemC code for the system with different interconnect architectures, along with its power and area characteristics. The generated SystemC code can be used for quick simulation and coupled with efficient test benches can be used for quick verification. Network-on-Chip (NoC) is considered as a solution to the communication bottleneck in future SoC architectures with data throughput requirements of over 10GB/s. It aims to provide low power, efficient link utilisation, reduced data contention and reduced area on silicon. Current on-chip networks, developed with fixed architectural parameters, do not utilise the available resources efficiently. To increase this efficiency, a novel dynamically reconfigurable NoC (drNoC) is developed in this thesis. The proposed drNoC reconfigures itself in terms of switching, routing and packet size with the changing communication requirements of the system at run time, thus utilising the maximum available channel bandwidth. In order to increase the applicability of drNoC, the network interface is designed to support OCP socket standard. This makes drNoC a highly reuseable communication framework, qualifying it as a communication centric platform for high data intensive SoC architectures. Simulation results show a 32% increase in data throughput and 22-35% decrease in network delay when compared with a traditional NoC with fixed parameters.
Supervisor: Arslan, Tughrul. ; Erdogan, Ahmet. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.562468  DOI: Not available
Keywords: network-on-chip ; NoC ; dynamically reconfigurable NoC ; On-chip communication ; hybrid communication medium ; communication centric platforms ; SOCCAD tool
Share: