Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.562256
Title: Establishing the sensitivity of Synthetic Aperture Radar to above-ground biomass in wooded savannas
Author: Viergever, Karin Marijke
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Radar for biomass estimation has been widely investigated for temperate, boreal and tropical forests, yet tropical savanna woodlands, which generally form non-continuous cover canopies or sparse woodlands, have been largely neglected in biomass studies. This thesis evaluates the capability of Synthetic Aperture Radar (SAR) for estimating the above-ground biomass of the woody vegetation in a savanna in Belize, Central America. This is achieved by evaluating (i) polarimetric Synthetic Aperture Radar (SAR) backscatter and (ii) single-pass shortwave interferometric SAR (InSAR) as indicators of above-ground biomass. Specifically, the effect on SAR backscatter of woody vegetation structure such as canopy cover, basal area, vegetation height and above-ground biomass is evaluated. Since vegetation height is often correlated to above-ground biomass, the effectiveness of vegetation height retrieval from InSAR is evaluated as an indicator of above-ground biomass. The study area, situated in Belize, is representative of Central American savannas. Radar data used are AIRSAR fully polarimetric L- and P-band SAR, and AIRSAR C-band InSAR, Intermap Technologies STAR-3i X-band InSAR, and Shuttle Radar Topography Mission (SRTM) C-band InSAR. The field data comprise accurately georeferenced three-dimensional measurements for 1,133 trees and shrubs and 75 palmetto clumps and thickets in a transect of 800 m x 60 m which spans the main savanna vegetation strata of the study area. An additional 2,464 ground points were observed. Results show that savanna woodlands present a challenge for radar remote sensing methods due to the sparse and heterogeneous nature of savanna woodlands. Long-wave SAR backscatter is dominated not only by high biomass areas, but also by areas of leafy palmetto which have low vegetative biomass. Retrieved woodland canopy heights from X- and C-band InSAR are indicative of the general patterns of tree height, although retrieved heights are underestimated. The amount of underestimation is variable across the different canopy conditions. Of these two methods, the shortwave InSAR data give a better indication of the spatial distribution of the above-ground biomass of the woody vegetation in the savannas than SAR backscatter. These results have implications for new and planned future global biomass estimation missions, such as ALOS PALSAR, ESA’s planned P-band BIOMASS and TanDEM-X. Without appropriate mediation, SAR backscatter methods might overestimate above-ground biomass of the woody vegetation of savannas while InSAR height retrieval methods might underestimate biomass estimates. Some possible mediating approaches are discussed.
Supervisor: Woodhouse, Iain. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.562256  DOI: Not available
Keywords: Geosciences
Share: