Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561988
Title: Molecular mechanisms of hepatic injury and repair
Author: Henderson, Neil C.
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
In this thesis I examined molecular mechanisms involved in acute and chronic liver injury, and also studied basic pathways mediating tumour promotion. Acute hepatic failure secondary to paracetamol poisoning is associated with high mortality. C-jun (NH2) terminal kinase (JNK) is a member of the mitogen activated protein kinase family and is a key intracellular signaling molecule involved in the control of cell fate. Paracetamol induced hepatic JNK activation in both human and murine paracetamol hepatotoxicity, and in a murine model preceded the onset of hepatocyte death. JNK inhibition in vivo (using two JNK inhibitors with different mechanisms of action) markedly reduced mortality in murine paracetamol hepatotoxicity. In addition, delayed administration of JNK inhibitor was more effective than N-acetylcysteine following paracetamol poisoning in mice. JNK inhibition was not protective in acute carbon tetrachloride or anti-Fas antibody mediated hepatic injury, suggesting specificity for the role of JNK in paracetamol hepatotoxicity. Furthermore, disruption of the JNK1 or JNK2 genes did not protect against paracetamol-induced hepatic damage. Pharmacological JNK inhibition had no effect on paracetamol metabolism, but markedly inhibited hepatic TNF-alpha production following paracetamol poisoning. These data demonstrate a central role for JNK in the pathogenesis of paracetamol induced liver failure, thereby identifying JNK as an important therapeutic target in the treatment of paracetamol hepatotoxicity. Liver fibrosis with loss of tissue architecture and subsequent hepatic failure represents a massive healthcare burden worldwide. Expression of Galectin-3 (a beta-galactoside binding animal lectin) is upregulated in established human fibrotic liver disease, during the development of experimental liver fibrosis and is temporally and spatially related to the induction and resolution of experimental hepatic fibrosis. Disruption of the gene encoding Galectin-3 blocks transdifferentiation of precursors to myofibroblasts in vitro and in vivo, markedly attenuating hepatic scarring in a murine model of liver fibrosis. Inhibition of Galectin-3 expression by siRNA in primary murine and human hepatic stellate cells significantly reduced myofibroblast activation and procollagen(I) expression. The reduction in hepatic fibrosis observed in the Galectin-3-/- mouse occurred despite equivalent liver injury and inflammation, and similar tissue expression of TGF-beta. TGF-beta failed to transactivate Galectin-3-/- hepatic stellate cells, in contrast with wild type hepatic stellate cells. However TGF-beta stimulated signaling via Smad-2 and 3 was equivalent in both Galectin-3-/- and wild type hepatic stellate cells indicating that Galectin-3 is required for TGF-beta mediated myofibroblast activation and matrix production. This supports a novel and important mechanistic role for Galectin-3 in the regulation of myofibroblast activation and consequent liver fibrosis. Finally, in vivo siRNA knockdown of Galectin-3 inhibited myofibroblast activation following hepatic injury and may therefore provide a novel therapeutic approach to the prevention and treatment of liver fibrosis. CD98hc (a ligand for Galectin-3) constitutively and specifically associates with beta1 integrins and is highly expressed on the surface of human tumour cells irrespective of the tissue of origin. CD98hc promotes both anchorage- and serum-independent growth. Using chimeras of CD98hc and the type II membrane protein CD69 demonstrated that the transmembrane domain of CD98hc is necessary and sufficient for integrin association in cells. Furthermore, CD98hc/β1 integrin association is required for focal adhesion kinase-dependent phosphoinositol 3-hydroxykinase activation and cellular transformation. Amino acids 82-87 in the putative cytoplasmic/transmembrane region appear to be critical for the oncogenic potential of CD98hc and provide a novel mechanism for tumour promotion by integrins.
Supervisor: Sethi, Tariq. ; Simpson, Ken. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.561988  DOI: Not available
Keywords: paracetamol hepatotoxicity ; acute liver failure
Share: