Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561873
Title: Linear dynamic models for automatic speech recognition
Author: Frankel, Joe
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2004
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The majority of automatic speech recognition (ASR) systems rely on hidden Markov models (HMM), in which the output distribution associated with each state is modelled by a mixture of diagonal covariance Gaussians. Dynamic information is typically included by appending time-derivatives to feature vectors. This approach, whilst successful, makes the false assumption of framewise independence of the augmented feature vectors and ignores the spatial correlations in the parametrised speech signal. This dissertation seeks to address these shortcomings by exploring acoustic modelling for ASR with an application of a form of state-space model, the linear dynamic model (LDM). Rather than modelling individual frames of data, LDMs characterize entire segments of speech. An auto-regressive state evolution through a continuous space gives a Markovian model of the underlying dynamics, and spatial correlations between feature dimensions are absorbed into the structure of the observation process. LDMs have been applied to speech recognition before, however a smoothed Gauss-Markov form was used which ignored the potential for subspace modelling. The continuous dynamical state means that information is passed along the length of each segment. Furthermore, if the state is allowed to be continuous across segment boundaries, long range dependencies are built into the system and the assumption of independence of successive segments is loosened. The state provides an explicit model of temporal correlation which sets this approach apart from frame-based and some segment-based models where the ordering of the data is unimportant. The benefits of such a model are examined both within and between segments. LDMs are well suited to modelling smoothly varying, continuous, yet noisy trajectories such as found in measured articulatory data. Using speaker-dependent data from the MOCHA corpus, the performance of systems which model acoustic, articulatory, and combined acoustic-articulatory features are compared. As well as measured articulatory parameters, experiments use the output of neural networks trained to perform an articulatory inversion mapping. The speaker-independent TIMIT corpus provides the basis for larger scale acoustic-only experiments. Classification tasks provide an ideal means to compare modelling choices without the confounding influence of recognition search errors, and are used to explore issues such as choice of state dimension, front-end acoustic parametrization and parameter initialization. Recognition for segment models is typically more computationally expensive than for frame-based models. Unlike frame-level models, it is not always possible to share likelihood calculations for observation sequences which occur within hypothesized segments that have different start and end times. Furthermore, the Viterbi criterion is not necessarily applicable at the frame level. This work introduces a novel approach to decoding for segment models in the form of a stack decoder with A* search. Such a scheme allows flexibility in the choice of acoustic and language models since the Viterbi criterion is not integral to the search, and hypothesis generation is independent of the particular language model. Furthermore, the time-asynchronous ordering of the search means that only likely paths are extended, and so a minimum number of models are evaluated. The decoder is used to give full recognition results for feature-sets derived from the MOCHA and TIMIT corpora. Conventional train/test divisions and choice of language model are used so that results can be directly compared to those in other studies. The decoder is also used to implement Viterbi training, in which model parameters are alternately updated and then used to re-align the training data.
Supervisor: King, Simon. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.561873  DOI: Not available
Keywords: PhD thesis ; automatic speech recognition ; hidden Markov models ; inear dynamic model ; speech
Share: