Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561481
Title: Keystroke dynamics as a biometric
Author: Marsters, John-David
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Modern computer systems rely heavily on methods of authentication and identity verification to protect sensitive data. One of the most robust protective techniques involves adding a layer of biometric analysis to other security mechanisms, as a means of establishing the identity of an individual beyond reasonable doubt. In the search for a biometric technique which is both low-cost and transparent to the end user, researchers have considered analysing the typing patterns of keyboard users to determine their characteristic timing signatures. Previous research into keystroke analysis has either required fixed performance of known keyboard input or relied on artificial tests involving the improvisation of a block of text for analysis. I is proposed that this is insufficient to determine the nature of unconstrained typing in a live computing environment. In an attempt to assess the utility of typing analysis for improving intrusion detection on computer systems, we present the notion of ‘genuinely free text’ (GFT). Through the course of this thesis, we discuss the nature of GFT and attempt to address whether it is feasible to produce a lightweight software platform for monitoring GFT keystroke biometrics, while protecting the privacy of users. The thesis documents in depth the design, development and deployment of the multigraph-based BAKER software platform, a system for collecting statistical GFT data from live environments. This software platform has enabled the collection of an extensive set of keystroke biometric data for a group of participating computer users, the analysis of which we also present here. Several supervised learning techniques were used to demonstrate that the richness of keystroke information gathered from BAKER is indeed sufficient to recommend multigraph keystroke analysis, as a means of augmenting computer security. In addition, we present a discussion of the feasibility of applying data obtained from GFT profiles in circumventing traditional static and free text analysis biometrics.
Supervisor: Damper, Robert Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.561481  DOI: Not available
Keywords: QA75 Electronic computers. Computer science
Share: