Title:

Conditions on the existence of unambiguous morphisms

A morphism $\sigma$ is \emph{(strongly) unambiguous} with respect to a word $\alpha$ if there is no other morphism $\tau$ that maps $\alpha$ to the same image as $\sigma$. Moreover, $\sigma$ is said to be \emph{weakly unambiguous} with respect to a word $\alpha$ if $\sigma$ is the only \emph{nonerasing} morphism that can map $\alpha$ to $\sigma(\alpha)$, i.\,e., there does not exist any other nonerasing morphism $\tau$ satisfying $\tau(\alpha) = \sigma(\alpha)$. In the first main part of the present thesis, we wish to characterise those words with respect to which there exists a weakly unambiguous \emph{lengthincreasing} morphism that maps a word to an image that is strictly longer than the word. Our main result is a compact characterisation that holds for all morphisms with ternary or larger target alphabets. We also comprehensively describe those words that have a weakly unambiguous lengthincreasing morphism with a unary target alphabet, but we have to leave the problem open for binary alphabets, where we can merely give some noncharacteristic conditions. \par The second main part of the present thesis studies the question of whether, for any given word, there exists a strongly unambiguous \emph{1uniform} morphism, i.\,e., a morphism that maps every letter in the word to an image of length $1$. This problem shows some connections to previous research on \emph{fixed points} of nontrivial morphisms, i.\,e., those words $\alpha$ for which there is a morphism $\phi$ satisfying $\phi(\alpha) = \alpha$ and, for a symbol $x$ in $\alpha$, $\phi(x) \neq x$. Therefore, we can expand our examination of the existence of unambiguous morphisms to a discussion of the question of whether we can reduce the number of different symbols in a word that is not a fixed point such that the resulting word is again not a fixed point. This problem is quite similar to the setting of Billaud's Conjecture, the correctness of which we prove for a special case.
