Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.560926
Title: Probing the early universe and dark energy with multi-epoch cosmological data
Author: Hlozek, Renee Alexandra
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
Contemporary cosmology is a vibrant field, with data and observations increasing rapidly. This allows for accurate estimation of the parameters describing our cosmological model. In this thesis we present new research based on two different types of cosmological observations, which probe the universe at multiple epochs. We begin by reviewing the current concordance cosmological paradigm, and the statistical tools used to perform parameter estimation from cosmological data. We highlight the initial conditions in the universe and how they are detectable using the Cosmic Microwave Background radiation. We present the angular power spectrum data from temperature observations made with the Atacama Cosmology Telescope (ACT) and the methods used to estimate the power spectrum from temperature maps of the sky. We then present a cosmological analysis using the ACT data in combination with observations from the Wilkinson Microwave Anisotropy Probe to constrain parameters such as the effective number of relativistic species and the spectral index of the primordial power spectrum, which we constrain to deviate from scale invariance at the 99% confidence limit. We then use this combined dataset to constrain the primordial power spectrum in a minimally parametric framework, finding no evidence for deviation from a power-law spectrum. Finally we present Bayesian Estimation Applied to Multiple Species, a parameter estimation technique using photometric Type Ia Supernova data to estimate cosmological parameters in the presence of contaminated data. We apply this algorithm to the full season of the Sloan Digital Sky Survey II Supernova Search, and find that the constraints are improved by a factor of three relative to the case where one uses a smaller, spectroscopically confirmed subset of supernovae.
Supervisor: Dunkley, Joanna Sponsor: Rhodes Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.560926  DOI: Not available
Keywords: Astrophysics ; Cosmology ; parameter estimation ; observational
Share: