Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.560911
Title: The role of protein kinase C in platelet activation
Author: Unsworth, Amanda J.
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
The Protein kinase C (PKC) superfamily is a key regulator in platelet activation with individual isoforms playing distinct roles. This thesis focuses on the role of the novel PKC isoforms downstream of several agonists using both pharmacological and genetic approaches and human and mouse platelets. Quantification of the protein levels of PKC isoforms identified different levels of the five major PKC isoforms expressed in human platelets and also differences between levels of the same isoform in human and mouse platelets. Use of a selection of broad spectrum and isoform-specific inhibitors, identified both positive and negative novel roles for PKC in the regulation of human and mouse platelets. A net positive role for PKC was found in GPVI, Clec-2, and PAR receptor signalling, with classical isoforms of PKC playing a major role in aggregation and dense granule secretion. A novel negative regulatory role was also identified in the regulation of ADP-induced platelet activation for PKC~, and both PKCE and PKC~ in human and mouse platelets respectively. Gene knock-out mouse models confirmed a positive regulatory role for PKCe in allb~3 outside-in signalling but identified no other regulatory role for PKCe in agonist induced platelet activation. Despite this relatively minor role, functional redundancy was identified between PKCe and PKCE isoforms in haemostasis, as tail bleeding was significantly increased in mice deficient in both novel isoforms. The work presented here identifies key roles for the PKC superfamily in the complex regulation of platelet activation, with different isoforms supporting and limiting the process of thrombus formation and haemostasis.
Supervisor: Pears, Catherine J. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.560911  DOI: Not available
Keywords: Biochemistry ; Cell Biology (see also Plant sciences) ; platelets ; regulation ; signalling
Share: