Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.560231
Title: Development of molecular approaches in the study of lettuce downy mildew (Bremia lactucae) population biology
Author: Xu, Limin
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Downy mildew of lettuce caused by Bremia lactucae is a serious disease resulting in yield loss. The population structure of the pathogen in the UK is poorly understood. This PhD project concentrated on developing molecular markers to differentiate the genotypic variation of B. lactucae populations, with the aim of improving methods to investigate lettuce - Bremia interactions. Thirty-seven B. lactucae isolates (including single-spore and new field isolates) were collected and characterized for virulence using the conventional International Bremia Evaluation Board (IBEB) differential set. Microsatellite markers (SSR, ISSR) were investigated for Bremia race specific marker development. Three isolates of B. lactucae were characterized by ISSR (inter simple sequence repeat) primers, although the polymorphic DNA could not be cloned in this project due to the highly variable results of the ISSR process. Some microsatellite repeats were found in B. lactucae isolates sequences that amplified by Plasmopara viticola (grape downy mildew) SSR markers. The development of Simple Sequence Repeat (SSR) markers from Bremia genomic DNA was not successful, which might result from the primers used being unsuitable for Bremia microsatellite enrichment. Bremia specific ITS primers were used for quantitative PCR. RxLR primers obtained from UC Davis (USA) were tested using the collection of B. lactucae isolates. RxLR1 primers distinguished between isolates BL801 and BL806. Eight SNPs were identified in three isolates amplified by RxLR5. No polymorphism was observed on the gel for the remaining RxLR primers on single spore races. Unrefined field isolates showed more polymorphisms on the gel than single spore isolates. The phenotypic differences between these two isolates have been identified by the IBEB differential set. Microscopy and qPCR quantification were used to investigate the compatible and incompatible interactions. The results suggest that BL801 is more virulent than BL806, as more infection structures were observed in IBEB resistant cultivars. Results of qPCR and spore count/unit weight of cotyledons showed that BL801 and BL806 were significantly different. The qPCR quantification results from 4 and 5 dpi were correlated with the spore count/unit weight of cotyledons. Although further work is required to develop race specific markers, the methods used in this project demonstrate the potential use of molecular markers to investigate lettuce - Bremia interactions.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.560231  DOI: Not available
Keywords: SB Plant culture
Share: