Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558765
Title: Deterministic simulation of multi-beaded models of dilute polymer solutions
Author: Figueroa, Leonardo E.
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
We study the convergence of a nonlinear approximation method introduced in the engineering literature for the numerical solution of a high-dimensional Fokker--Planck equation featuring in Navier--Stokes--Fokker--Planck systems that arise in kinetic models of dilute polymers. To do so, we build on the analysis carried out recently by Le~Bris, Leli\`evre and Maday (Const. Approx. 30: 621--651, 2009) in the case of Poisson's equation on a rectangular domain in $\mathbb{R}^2$, subject to a homogeneous Dirichlet boundary condition, where they exploited the connection of the approximation method with the greedy algorithms from nonlinear approximation theory explored, for example, by DeVore and Temlyakov (Adv. Comput. Math. 5:173--187, 1996). We extend the convergence analysis of the pure greedy and orthogonal greedy algorithms considered by Le~Bris, Leli\`evre and Maday to the technically more complicated situation of the elliptic Fokker--Planck equation, where the role of the Laplace operator is played out by a high-dimensional Ornstein--Uhlenbeck operator with unbounded drift, of the kind that appears in Fokker--Planck equations that arise in bead-spring chain type kinetic polymer models with finitely extensible nonlinear elastic potentials, posed on a high-dimensional Cartesian product configuration space $\mathsf{D} = D_1 \times \dotsm \times D_N$ contained in $\mathbb{R}^{N d}$, where each set $D_i$, $i=1, \dotsc, N$, is a bounded open ball in $\mathbb{R}^d$, $d = 2, 3$. We exploit detailed information on the spectral properties and elliptic regularity of the Ornstein--Uhlenbeck operator to give conditions on the true solution of the Fokker--Planck equation which guarantee certain rates of convergence of the greedy algorithms. We extend the analysis to discretized versions of the greedy algorithms.
Supervisor: Süli, Endre Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.558765  DOI: Not available
Keywords: Mathematics ; Approximations and expansions ; Fluid mechanics (mathematics) ; Numerical analysis ; Partial differential equations ; Statistical mechanics,structure of matter (mathematics) ; numerical analysis ; statistical mechanics ; high-dimensional PDE ; spectral methods ; Fokker-Planck equations ; polymer solutions ; nonlinear spproximation ; greedy algorithms ; Mathematics Subject Classification (2000): 65N15,65D15,41A63,41A25
Share: