Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556946
Title: Phosphatidylinositol (3,5) bisphosphate dependent membrane trafficking in S. cerevisiae
Author: Williams, Fay Kathleen
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Phosphoinositides are lipid signals that control cellular processes and are particularly closely associated with the control of membrane trafficking. PtdIns(3,5) \(\char{cmmi10}{0x50}\)\(_2\) is the most recently identified phosphoinositide and was previously recognised as controlling events in the late endocytic system between the late endosome and the vacuole/lysosome. Primarily associated with retrograde trafficking from the vacuole/lysosome to the late endosome/MVB, PtdIns(3,5) \(\char{cmmi10}{0x50}\)\(_2\) is generated by the kinase Fab1p (PIKfyve in animals). In mammalian cells, PtdIns(3,5) \(\char{cmmi10}{0x50}\)\(_2\) has also been implicated in control of ill-defined trafficking pathways close to the Golgi; for example, the recycling of mannose-6-phosphate receptor (M6R) back to the Golgi and also the trafficking of some types of ion and nutrient channels from the Golgi to the cell surface. This thesis describes attempts to study putative PtdIns(3,5) \(\char{cmmi10}{0x50}\)\(_2\) dependent trafficking in the early endocytic system of \(\char{cmmi10}{0x53}\). \(\char{cmmi10}{0x63}\)\(\char{cmmi10}{0x65}\)\(\char{cmmi10}{0x72}\)\(\char{cmmi10}{0x65}\)\(\char{cmmi10}{0x76}\)\(\char{cmmi10}{0x69}\)\(\char{cmmi10}{0x73}\)\(\char{cmmi10}{0x69}\)\(\char{cmmi10}{0x61}\)\(\char{cmmi10}{0x65}\) using two model proteins; the recycling of Vps10p from late endosome to Golgi and of Chs3p from recycling endosome to Golgi.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.556946  DOI: Not available
Keywords: QD Chemistry ; QH301 Biology ; QM Human anatomy ; QP Physiology
Share: