Use this URL to cite or link to this record in EThOS:
Title: The effects of carbon deposition on catalyst deactivation in high temperature Fischer-Tropsch catalysts
Author: Patterson, Veronica A.
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 06 Jun 2019
Access from Institution:
In this work, carbonaceous deposits on spent HTFT catalysts were investigated. This research was required in order to better understand the observed loss in productivity observed in the industrial reactors, with the aim of improving the economy of the HTFT process. A host of complementary techniques were employed to systematically determine the composition of a typical catalyst recovered from a reactor. Spent HTFT catalysts are comprised of magnetite and a mixture of iron carbides as well as adsorbed hydrocarbon products (soft carbon) and hard carbon. Reaction initiates at the particle surface and along the promoter-rich grain boundaries toward the core of the grains. A partially reacted particle would therefore have a core-shell structure, with magnetite representing the unreacted region of the catalyst. The reacted region consists of a porous carbonaceous matrix with soft carbon and carbide crystallites nestled in this matrix. The hard carbonaceous species is a mixture of polymeric carbon and polycyclic aromatic hydrocarbons. The particle structure is linked to the sample preparation method and an alternative method yielding catalyst particle with uniformly distributed promoter elements could be beneficial. Investigating carbonaceous species is a complex process, and development of a fresh methodology would aid in the quest for insight into the nature of carbonaceous species in various systems. A new approach which entails a combination of the traditional techniques combined with MALDI-TOF MS enabled a deeper investigation. Additional aspects such as the molecular weight distributions along with known information about crystallinity and morphology of the catalyst provide a comprehensive study of carbonaceous material. Polymeric carbon and very large polycyclic aromatic hydrocarbons constitute hard carbon and can be observed with minimal sample preparation procedures. The evolution of the HTFT catalysts was investigated as a function of time-on-stream. This enabled us to study the effects of increasing amounts of hard carbon on the activity and the chemical and physical properties of the catalysts. The catalyst activity was found to decrease with increasing hard carbon content, although the effect of carbon deposition cannot be distinguished from phase transformation (oxidation) which occurs simultaneously. A method to quantify the amount of hard carbon, which progressively builds up on the catalyst, was demonstrated. This required a great deal of method development, which provides a platform for future investigations of these catalysts. Importantly, it allows predictions of the amounts of carbon that will be deposited after a certain reaction time. This allows more efficient regulation of catalyst replacement. The production of fine carbon-rich particles in the industrial reactor poses a major problem in the process. Carbon deposition leads to an increase in particle diameter with time on-stream. Permissible levels of hard carbon were identified, beyond which the mechanical strength of the catalyst particles deteriorate. This leads to break-up of the particles and therefore fines formation. The surface area and pore volume generally increase with progressive deposition of hard carbon, while the bulk density of the catalyst material exhibits a linear decrease with carbon build-up. A mechanism is proposed for hard carbon formation which apparently occurs through the dissociative adsorption of CO to form a carbon monolayer. This is followed by polymerisation of the carbon atoms. Meta-stable interstitial carbides are formed at the iron-carbon interface. Owing to a carbon concentration gradient between the top of the surface and the bottom of the metal or carbide particle, carbon diffusion across the crystal (carbide decomposition) and grows as a PAH molecule lifting the iron carbide away from the particle. As this corrosion process is intrinsic to iron-based catalysts, a catalyst that contains sulphur is proposed for future development.
Supervisor: Botting, Catherine. ; Webb, Paul P. W. Sponsor: Sasol Technology UK
Qualification Name: Thesis (Ph.D.) Qualification Level: Thesis
EThOS ID:  DOI: Not available
Keywords: Fischer-Tropsch synthesis ; Carbon deposits ; Graphene ; Catalyst deactivation ; TP355.P2 ; Fischer-Tropsch process ; Catalyst poisoning ; Polycyclic aromatic hydrocarbons