Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556191
Title: Signal processing for magnetoencephalography
Author: Clarke, Rupert Benjamin
Awarding Body: University of York
Current Institution: University of York
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Magnetoencephalography (MEG) is a non-invasive technology for imaging human brain function. Contemporary methods of analysing MEG data include dipole fitting, minimum norm estimation (MNE) and beamforming. These are concerned with localising brain activity, but in isolation they do not provide concrete evidence of interaction among brain regions. Since cognitive neuroscience demands answers to this type of question, a novel signal processing framework has been developed consisting of three stages. The first stage uses conventional MNE to separate a small number of underlying source signals from a large data set. The second stage is a novel time-frequency analysis consisting of a recursive filter bank. Finally, the filtered outputs from different brain regions are compared using a unique partial cross-correlation analysis that accounts for propagation time. The output from this final stage could be used to construct conditional independence graphs depicting the internal networks of the brain. In the second processing stage, a complementary pair of high- and low-pass filters is iteratively applied to a discrete time series. The low-pass output is critically sampled at each stage, which both removes redundant information and effectively scales the filter coefficients in time. The approach is similar to the Fast Wavelet Transform (FWT), but features a more sophisticated resampling step. This, in combination with the filter design procedure leads to a finer frequency resolution than the FWT. The subsequent correlation analysis is unusual in that a latency estimation procedure is included to establish the probable transmission delays between regions of interest. This test statistic does not follow the same distribution as a conventional correlation measures, so an empirical model has been developed to facilitate hypothesis testing.
Supervisor: Halliday, David Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.556191  DOI: Not available
Share: