Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556027
Title: Sensor web geoprocessing on the grid
Author: McCullough, Aengus
Awarding Body: Newcastle University
Current Institution: University of Newcastle upon Tyne
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Recent standardisation initiatives in the fields of grid computing and geospatial sensor middleware provide an exciting opportunity for the composition of large scale geospatial monitoring and prediction systems from existing components. Sensor middleware standards are paving the way for the emerging sensor web which is envisioned to make millions of geospatial sensors and their data publicly accessible by providing discovery, task and query functionality over the internet. In a similar fashion, concurrent development is taking place in the field of grid computing whereby the virtualisation of computational and data storage resources using middleware abstraction provides a framework to share computing resources. Sensor web and grid computing share a common vision of world-wide connectivity and in their current form they are both realised using web services as the underlying technological framework. The integration of sensor web and grid computing middleware using open standards is expected to facilitate interoperability and scalability in near real-time geoprocessing systems. The aim of this thesis is to develop an appropriate conceptual and practical framework in which open standards in grid computing, sensor web and geospatial web services can be combined as a technological basis for the monitoring and prediction of geospatial phenomena in the earth systems domain, to facilitate real-time decision support. The primary topic of interest is how real-time sensor data can be processed on a grid computing architecture. This is addressed by creating a simple typology of real-time geoprocessing operations with respect to grid computing architectures. A geoprocessing system exemplar of each geoprocessing operation in the typology is implemented using contemporary tools and techniques which provides a basis from which to validate the standards frameworks and highlight issues of scalability and interoperability. It was found that it is possible to combine standardised web services from each of these aforementioned domains despite issues of interoperability resulting from differences in web service style and security between specifications. A novel integration method for the continuous processing of a sensor observation stream is suggested in which a perpetual processing job is submitted as a single continuous compute job. Although this method was found to be successful two key challenges remain; a mechanism for consistently scheduling real-time jobs within an acceptable time-frame must be devised and the tradeoff between efficient grid resource utilisation and processing latency must be balanced. The lack of actual implementations of distributed geoprocessing systems built using sensor web and grid computing has hindered the development of standards, tools and frameworks in this area. This work provides a contribution to the small number of existing implementations in this field by identifying potential workflow bottlenecks in such systems and gaps in the existing specifications. Furthermore it sets out a typology of real-time geoprocessing operations that are anticipated to facilitate the development of real-time geoprocessing software.
Supervisor: Not available Sponsor: Engineering and Physical Sciences Research Council (EPSRC) ; School of Civil Engineering & Geosciences, Newcastle University
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.556027  DOI: Not available
Share: