Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.553986
Title: Studies into sulfur amino acid and bile salt metabolism in pancreatic and liver diseases : profiles of sulfur amino acids and glutathione in acute pancreatitis : method development for total and oxidized glutathione by liquid chromatography : bile salt profiles in liver disease by liquid chromatography-mass spectrometry
Author: Srinivasan, Asha R.
Awarding Body: University of Bradford
Current Institution: University of Bradford
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Sulfur amino acids have critical function as intracellular redox buffers and maintain homeostasis in the external milieu by combating oxidative stress. Synthesis of glutathione (GSH) is regulated at a substrate level by cysteine, which is synthesized by homocysteine via the transsulfuration pathway. Oxidative stress and diminished glutathione pools play a sustained role in the pathogenesis of acute pancreatitis. One of the aims of this study was to experimentally address the temporal relationship between plasma sulfur amino acid levels in patients suffering from acute pancreatitis. The data indicated low concentration of cysteine initially, at levels similar to those of healthy controls. Glutathione was found reduced whilst cysteinyl-glycine and γ- glutamyl transpeptidase activity were increased in both mild and severe attacks. As the disease progressed, glutathione and cysteinyl-glycine were further increased in mild attacks and cysteine levels correlated with homocysteine and γ-glutamyl transpeptidase activity. The progress of severe attacks was associated with glutathione depletion, reduced γ-glutamyl transpeptidase activity and increased cysteinyl-glycine, that correlated with glutathione depletion. The corollary that ample supply of cysteine and cysteinly-glycine does not contribute towards glutathione synthesis in acute pancreatitis poses an important issue that merits resolution. Heightened oxidative stress and depletion of glutathione rationalized the progression of disease in severe attacks. An upsurge that reactive oxygen species can shift redox state of cells is determined by the ratio of the abundant redox couples reduced and oxidized glutathione (GSH: GSSG) in cell. The study reported a novel methodology for quantification of total oxidized glutathione (tGSSG) and total glutathione (tGSH) in whole blood using reverse phase high performance liquid chromatography. The novelty of the method is ascertained by the use of a mercaptan scavenger 1, methyl-2-vinyl-pyridinium trifluromethanesulfonate for the total oxidized glutathione determination. The results reported permit quantitation of tGSSG and tGSH and was applied to a control group. Finally, the study was also focussed in developing a liquid chromatography-mass spectrometric method to evaluate free and conjugated bile acids in patients suffering from various degrees of cholestatic-hepatobiliary disorders. The study reported low levels of ursodeoxycholic acid (UDCA) and slightly high levels of lithocholic acid (LCA). All the primary bile acids seem to be conjugated with glycine and taurine amino acid.
Supervisor: Nicolaou, Anna. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.553986  DOI: Not available
Keywords: Acute pancreatitis ; Oxidative stress ; Cysteine ; Homocysteine ; Cysteinyl-glycine ; Glutathione ; Liquid chromatography mass spectrometry ; 1, methyl-2-vinyl-pyridinium trifluromethanesulfonate ; Liver disease ; Bile salts
Share: