Use this URL to cite or link to this record in EThOS:
Title: Intramolecular arylation of lithiated carbamates
Author: Fournier, Anne
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis describes research carried out on the synthesis of tertiary alcohols or derivatives by N to C aryl/vinyl migration in lithiated carbamates. Section II.1 describes the first enantioselective synthesis of the antihistamine agent clemastine, as its (S,S)-stereoisomer as an illustration of the methodology. It has been achieved by ether formation between a proline-derived chloroethylpyrrolidine and an enantiomerically enriched tertiary alcohol. The tertiary alcohol was formed from the carbamate derivative of alpha-methyl-p-chlorobenzyl alcohol by invertive aryl migration on lithiation. The (S,S)-stereochemistry of the product confirms the invertive nature of the rearrangement in contrast with related ureas. Modelling work to establish the origin of this stereodivergent behaviour is reported in Section II.2. This also reports in-situ IR experiments providing evidence of the mechanistic pathway of the rearrangement of an O-benzyl-N-aryl carbamate. The scope of the N to C aryl migration in other stabilised organolithiums is shown in section II.3. The rearrangement is now addressed in more systematic manner, thus allowing the alpha-arylation of O-allyl and O-propargylcarbamates (by alpha-deprotonation) and O-vinylcarbamates (by alpha-deprotonation) to be achieved in good yields but with poor stereoselectivity. Section II.4 goes on to show that enol carbamates derived from aromatic or alpha,beta-unsaturated compounds and bearing an N-aryl substituent undergo carbolithiation by nucleophilic attack at the alpha position of the enol double bond. The resulting carbamate-stabilised allylic, propargylic or benzylic organolithium rearranges with N to C migration of the N-aryl substitutent, creating a quaternary carbon alpha to O. The products may be easily hydrolysed to generate multiply branched tertiary alcohols in good to moderate yields in a one-pot tandem reaction. Finally, Section II.5 proves that the rearrangement in lithiated carbamates can be extended to N to C vinyl transfer.
Supervisor: Clayden, Jonathan Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: carbamates ; organolithiums ; arylation/vinylation ; stereospecific ; carbolithiation