Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.553244
Title: Elastase responsive hydrogel dressing for chronic wounds
Author: Bibi, Nurguse
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Chronic wounds are a major financial and clinical burden causing the deaths of millions per year. Over expression of elastase is well documented as the main culprit that delays the normal wound repair process within chronic wounds. The aim of this thesis is to design a responsive chronic wound dressing based on the hydrogel polymer, PEGA (polyethylene glycol acrylamide) in the form of particles to mop-up excess elastase by exploiting polymer collapse in response to elastase hydrolytic activity within sample fluids mimicking the environment of chronic wounds. PEGA particles were functionalised with enzyme cleavable peptides (ECPs) containing charged residues. Upon cleavage the charge balance changes, causing polymer swelling and consequent elastase entrapment. The pH range of chronic wounds is reported in the range of 5.45 - 8.65. Due to its pI which is around 8.3, within this range elastase exist both in its cationic and anionic forms. To accommodate a hydrogel dressing that could selectively entrap excess elastase both in its cationic and anionic, oppositely charged ECPs were designed. In its cationic form, elastase was found to have a high preference of cleaving ECPs and penetrating into PEGA particles bearing negative charges. In contrast, in its anionic form the opposite effect was observed, wherein elastase preferred to cleave ECPs and penetrate PEGA particles bearing positive charges. The diffusion, accessibility and entrapment of elastase into functionalised PEGA particles was explored using various fluorescence microscopy techniques. Removal of the charged residue by elastase showed a reduction in particle swelling causing the pores of PEGA particles to become restricted. In this manner, cleaved PEGA particles prevented the accessibility of molecules with a molecular weight as low as 20 kDa into the cleaved PEGA particles. Since elastase has a molecular weight of 25.9 kDa the collapsing of the pores within PEGA particles entrapped elastase inside the interior of cleaved PEGA particles. In its cationic form (at pH 7.4) elastase was found to penetrate and become trapped more into both negative and positive PEGA particles compared to neutral particles. The negative particles were shown to trapped cationic elastase within 2 minutes compared to the positive particles. In contrast, the neutral particles failed to retain and encapsulate elastase as the fluorescence inside the neutral particles was found to decrease. Coinciding with these observations, after sample fluids containing elastase were treated with functionalised PEGA particles, the residual elastase activity in sample fluids was reduced more by the charged PEGA particles compared to neutral particles. The cell culture studies demonstrated that the elastase activity observed in human dermal fibroblasts (HDF) was also reduced more by the charged particles compared to the neutral particles. However, the positive particles were found to significantly reduced HDF-elastase activity compared to both the negative and neutral PEGA particles. Overall, this thesis exemplifies that on the basis of charge selective cleaving of ECPs coupled to PEGA particles can be exploited to selectively remove excess proteases such as elastase from sample fluids mimicking the environment of chronic wounds.
Supervisor: Ulijn, Rein Sponsor: Nephew
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.553244  DOI: Not available
Keywords: Bioresponsive hydrogels ; Enzyme responsive hydrogels ; PEGA particles ; Chronic wound dressing ; Hydrogel wound dressing ; Elastase ; Reduction and removal of elastase activity
Share: