Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.552617
Title: Building complex systems based on simple molecular architectures
Author: Robertson, Craig Collumbine
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Over the past twenty years molecules capable of templating their own synthesis, so called self–replicating molecules have gained prominence in the literature. We show herein that mixing the reagents for replicating molecules can produce a network of self–replicators which coexist and that the networks can be instructed by the addition of preformed template upon initiation of the reaction. Whilst self–replicating molecules offer the simplest form of replication, nature has evolved to utilise not minimal self–replication but reciprocal replication where one strand templates the formation of not an identical copy of itself but a reciprocal strand. Efforts thus far at producing a synthetic reciprocal replicating system are discussed and an alternative strategy to address the problems encountered is proposed and successfully implemented. The kinetic behaviour of a self–replicating reaction bears two distinctive time periods. Upon initiation, the reaction proceeds slowly as no template exists to catalyse the reaction. Upon production of the template, the reaction proceeds more rapidly via template direction. During this slow reaction period, the system is prone to mistakes as the reaction is slow and unselective. The creation of an [A•B] binary complex through non–covalent recognition of reagents allows for the reaction to proceed at an accelerated rate upon initiation however products of such a reaction are usually catalytically inert and do not promote further template directed reaction. A strategy to combine the desired behaviour of an [A•B] binary complex with the further template directed autocatalytic self–replicating reaction is described and implemented. Supramolecular polymers consist of repeating monomers which are held together by non–covalent interactions. The strong association of a self–replicating template dimer is comparable to that of supramolecular polymers reported thus far in the literature which are produced by cumbersome standard linear synthetic procedures. Herein the application of self–replication to the field of supramolecular polymer synthesis is discussed. As the autocatalytic reaction to produce the template monomers occurs under the same conditions as required to allow polymerisation to proceed, the polymer is able to spontaneously form in situ by self–replicating supramolecular polymerisation.
Supervisor: Philp, Douglas Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.552617  DOI: Not available
Keywords: Physical organic chemistry ; Supramolecular chemistry ; QD878.R7 ; Physical organic chemistry ; Supramolecular chemistry
Share: