Use this URL to cite or link to this record in EThOS:
Title: MHD evolution of magnetic null points to static equilibria
Author: Fuentes Fernández, Jorge
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2011
Availability of Full Text:
Access through EThOS:
Access through Institution:
In magnetised plasmas, magnetic reconnection is the process of magnetic field merging and recombination through which considerable amounts of magnetic energy may be converted into other forms of energy. Reconnection is a key mechanism for solar flares and coronal mass ejections in the solar atmosphere, it is believed to be an important source of heating of the solar corona, and it plays a major role in the acceleration of particles in the Earth's magnetotail. For reconnection to occur, the magnetic field must, in localised regions, be able to diffuse through the plasma. Ideal locations for diffusion to occur are electric current layers formed from rapidly changing magnetic fields in short space scales. In this thesis we consider the formation and nature of these current layers in magnetised plasmas. The study of current sheets and current layers in two, and more recently, three dimensions, has been a key field of research in the last decades. However, many of these studies do not take plasma pressure effects into consideration, and rather they consider models of current sheets where the magnetic forces sum to zero. More recently, others have started to consider models in which the plasma beta is non-zero, but they simply focus on the actual equilibrium state involving a current layer and do not consider how such an equilibrium may be achieved physically. In particular, they do not allow energy conversion between magnetic and internal energy of the plasma on their way to approaching the final equilibrium. In this thesis, we aim to describe the formation of equilibrium states involving current layers at both two and three dimensional magnetic null points, which are specific locations where the magnetic field vanishes. The different equilibria are obtained through the non-resistive dynamical evolution of perturbed hydromagnetic systems. The dynamic evolution relaxes via viscous damping, resulting in viscous heating. We have run a series of numerical experiments using LARE, a Lagrangian-remap code, that solves the full magnetohydrodynamic (MHD) equations with user controlled viscosity and resistivity. To allow strong current accumulations to be created in a static equilibrium, we set the resistivity to be zero and hence simply reach our equilibria by solving the ideal MHD equations. We first consider the relaxation of simple homogeneous straight magnetic fields embedded in a plasma, and determine the role of the coupling between magnetic and plasma forces, both analytically and numerically. Then, we study the formation of current accumulations at 2D magnetic X-points and at 3D magnetic nulls with spine-aligned and fan-aligned current. At both 2D X-points and 3D nulls with fan-aligned current, the current density becomes singular at the location of the null. It is impossible to be precisely achieve an exact singularity, and instead, we find a gradual continuous increase of the peak current over time, and small, highly localised forces acting to form the singularity. In the 2D case, we give a qualitative description of the field around the magnetic null using a singular function, which is found to vary within the different topological regions of the field. Also, the final equilibrium depends exponentially on the initial plasma pressure. In the 3D spine-aligned experiments, in contrast, the current density is mainly accumulated along and about the spine, but not at the null. In this case, we find that the plasma pressure does not play an important role in the final equilibrium. Our results show that current sheet formation (and presumably reconnection) around magnetic nulls is held back by non-zero plasma betas, although the value of the plasma pressure appears to be much less important for torsional reconnection. In future studies, we may consider a broader family of 3D nulls, comparing the results with the analytical calculations in 2D, and the relaxation of more complex scenarios such as 3D magnetic separators.
Supervisor: Parnell, Clare E. Sponsor: SOLAIRE European Training Network
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Sun ; Magnetic fields ; Reconnection ; QB539.M23F8 ; Magnetic reconnection--Mathematical models ; Solar magnetic fields--Mathematical models ; Magnetohydrodynamics