Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.552382
Title: Novel methodology for the synthesis of ¹³C-Labelled phenols and its application to the total synthesis of polyphenols
Author: Marshall, Laura J.
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The base-catalysed reaction of 4H-pyran-4-one with a range of nucleophiles, namely diethyl malonate, ethyl acetoacetate, nitromethane, acetylacetone and ethyl cyanoacetate, was developed as a reliable, high yielding method for the preparation of para-substituted phenols. The methodology was extended to include the use of the substituted pyranones, maltol, 2,6-dimethyl-4H-pyran-4-one and diethyl chelidonate. Reactions were studied using conventional heating methods and microwave irradiation. Microwave irradiation had definite beneficial effects, with improved yields, reduced reaction times and cleaner reaction profiles. The potential of this methodology was examined for the regioselective placement of ¹³C-atoms into benzene rings using ¹³C-labelled nucleophiles or ¹³C-labelled 4H-pyran-4-ones. [3,5-13C₂]4H-Pyran-4-one and [2,6-13C₂]4H-pyran-4-one were prepared from various ¹³C-labelled versions of triethyl orthoformate and acetone. This methodology was applied to the synthesis of [1,3,5-¹³C₃]gallic acid, via the base-catalysed reaction of [3,5-¹³C₂]4H-pyran-4-one with diethyl [2-¹³C]malonate, followed by subsequent transformations to yield [1,3,5-¹³C₃]gallic acid. The preparation of [2-¹³C]phloroglucinol was carried out via [2-¹³C]resorcinol, with regioselective placement of a single ¹³C-atom into the aromatic ring. This was accomplished from non-aromatic precursors, with the source of the ¹³C-atom being [¹³C]methyl iodide. The key step in this synthesis was the introduction of the third hydroxyl group, which was achieved using a modified iridium-catalysed C-H activation/borylation/oxidation procedure. The scope of an existing C-H activation/borylation reaction was modified and expanded to include a range of protected resorcinol derivatives. A catalyst system was developed which allowed high conversion to the intermediate arylboronic acids, followed by oxidation using aqueous Oxone® to yield the corresponding phenols. Finally, to demonstrate the potential of these new methods for application in the synthesis of isotopically labelled natural products and polyphenols, the syntheses of ¹³C-labelled anthocyanins were studied. A route was developed that could be applied to the synthesis of either cyanidin-3-glucoside or delphinidin-3-glucoside. Only the final coupling/cyclisation step to yield the desired anthocyanin targets remains to be carried out.
Supervisor: Botting, Nigel P. Sponsor: GlaxoSmithKline ; Biotechnology and Biological Sciences Research Council ; EaStCHEM
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.552382  DOI: Not available
Keywords: Pyranone ; Maltol ; Chelidonic acid ; Pronucleophiles ; Phenols ; Substituted phenols ; Microwave irradiation ; ¹³C-labelling ; Regioselective ¹³C-labelling ; Gallic acid ; Phloroglucinol ; Resorcinol ; C-H activation borylation and oxidation ; Anthocyanins ; Cyanidin glucoside ; Delphinidin glucoside ; QD341.P5M2 ; Phenols--Synthesis ; Polyphenols--Research
Share: