Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.552213
Title: Large pore mesoporous silicas for application in protein adsorption, enzyme immobilisation and drug delivery
Author: Ritchie, Lyndsey K.
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2009
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
A range of mesoporous materials based on SBA-15, KIT-6 and FDU-12 have been prepared using neutral block copolymers Pluronic P123 and F127 and characterised using methods including electron microscopy and nitrogen adsorption. Typically the materials have a hexagonal (p6mm) or cubic (Fm3m and Ia-3d) symmetry and pore geometry and are rendered porous by either calcination or solvent extraction. Organic functional groups were incorporated into the silica walls of the materials by co-condensation in the form of propyl thiols and additives in the form of alkanes were added to control pore size and geometry. The effects of temperature, additives, organic functionalisation, synthesis time and sol-gel composition were investigated and the resulting materials were tested as supports for protein adsorption, enzyme immobilisation, and drug delivery. Two FDU-12 materials of differing entrance and cavity sizes were used to adsorb a range of proteins with molecular weight 17 to 160 kDa to determine if there was a size exclusion effect. It was seen that the larger pore material was able to adsorb proteins of a larger size (molecular weight 105 kDa) and an exclusion effect was observed when the dimension of the proteins became too great (larger than 130 kDa). There was no clear trend for the smaller pore material where each protein was adsorbed to some extent by the material but apart from the smallest protein, myoglobin, mainly on the surface and not within the pores. The adsorption of the lipase B from Candida Antartica, CALB, was studied on a range of mesoporous supports with their templates removed by either calcination or extraction. The effect of pore size and functionalisation was investigated in terms of maximum loading and rate of loading. By functionalising the KIT-6 material the maximum loading of CALB was reduced from 45.5 to 32 mg/g whereas functionalising the FDU-12 material increased the maximum from 33 to 42.5 mg/g. The activity of the immobilised CALB was measured by enantioselective transesterification of (R)-1-phenylethanol in methyltetrabutyl ether (MTBE). The effect of loading, surface functionalisation and reusability in organic media were investigated. Functionalisation with propyl thiol was seen to increase the rate of conversion after 30 minutes for both KIT-6 and FDU-12 materials. Selected FDU-12 and KIT-6 materials with window sizes from 6 to 12 nm and with and without functionalisation were used to carry out a drug release study using Bovine serum albumin (BSA). BSA was loaded onto the material and the uptake quantified using nitrogen adsorption, elemental analysis, and thermogravimetric analysis. The release of BSA into simulated body fluid at 37 ºC was measured using HPLC. Functionalisation was seen to have little effect. The type of cubic morphology controlled the rate at which the BSA was released. The KIT-6 3D channel material exhibited a burst release initially followed by a steady release of BSA whereas the mesocage FDU-12 material had a slower and more linear release profile, closer to that desired.
Supervisor: Wright, Paul A. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.552213  DOI: Not available
Keywords: Mesoporous silica ; Enzyme immobilisation ; Protein adsorption ; Drug delivery ; QC173.4P67R5 ; Mesoporous materials ; Silica
Share: