Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.551934
Title: Modelling powder compaction and breakage of compacts
Author: Shang, Chenglong
Awarding Body: University of Leicester
Current Institution: University of Leicester
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Experimental and numerical simulation studies were carried out to enhance the understanding of the compaction behaviour of powder materials and to study the breakage behaviour of tablets after compaction. In order to simulate powder compaction and post compaction behaviour an appropriate constitutive model is required. To calibrate the constitutive model (e.g. a Drucker-Prager Cap model) a series of experiments were carried out including closed die compaction, uniaxial and diametrical compression tests. A newly developed apparatus consisting of a die instrumented with radial stress sensors was used to determine constitutive parameters as well as friction properties between the powder and die wall. The calibration of constitutive models requires accurate stress-strain curves. During die compaction the deformation of the powder material is determined by considering the elastic deformation (or compliance) of the system. The effect of different compliance correction methods was evaluated with regards to the accuracy of models predicting the pressing forces. A method for accounting for non-homogeneous stress states in instrumented die compaction was also developed. A complete data extraction procedure was presented. The breakage behaviour of flat and curved faced tablets was investigated and the breakage patterns of tablets were examined by X-Ray computed tomography. An empirical equation that relates the material strength to the break force was proposed. The constitutive model was implemented into the finite element package Abaqus/Standard to simulate powder compaction and breakage. A range of failure criteria have been evaluated for predicting break force of flat and curved faced tablets under diametrical compression.
Supervisor: Sinka, Iosif Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.551934  DOI: Not available
Share: