Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.551393
Title: The effect of Adenovirus E1A on the human immunoproteasome and MHC complex
Author: Berhane, Sarah
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Adenovirus E1A (AdE1A) is a viral oncoprotein that targets many cellular proteins and pathways, mainly those involved in transcriptional regulation. Proteasomes represent the major non-lysosomal mechanism responsible for protein degradation. Following interferon-γ treatment, three proteasome subunits are replaced by immunosubunits LMP2, LMP7 and MECL-1 producing immunoproteasomes. The proteasome and immunoproteasome generate peptide antigens for MHC class I presentation to cytotoxic T-cells. In this study, the effect of AdE1A on human immunoproteasomes as well as MHC class I and class II cell surface expression was examined. It was found that AdE1A interacts with the immunoproteasome subunit MECL-1 through its N-terminal and CR3 regions. AdE1A also down-regulated all three immunosubunit expressions during adenovirus infection, transformation and AdE1A transfection, with the exception of Ad5-transformed cells where immunosubunit expression remained unchanged. Furthermore, MHC class I expression remained unaffected in the same three backgrounds. However, in the Ad12 transformants MHC class I was generally reduced prior to IFNγ treatment but was expressed after. MHC class II surface expression, in contrast, was down-regulated in all cases, except in Ad5 infected cells. Similarly, AdE1A reduced IFNγ-stimulated STAT1 phosphorylation and transcriptional response to IFNγ. And finally, T-cell recognition of target cells was reduced in the presence of AdE1A. In conclusion, AdE1A targets the human immunoproteasome, both through direct binding and down-regulation of expression. It also targets the expression of MHC class I and class II surface expression.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.551393  DOI: Not available
Keywords: RC0254 Neoplasms. Tumors. Oncology (including Cancer)
Share: