Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548664
Title: Metabolic profiling of volatile organic compounds and enhanced vibrational spectroscopy
Author: Cheung, William Hon Kit
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Metabolomics is a post genomic field of research concerned with the study of low molecular weight compounds within a biological system permitting the investigation of the metabolite differences between natural and perturbed systems (such as cells, organs and tissues). Rapid identification and discrimination of biological samples based upon metabolic differences and physiological status in microbiology, mammalian systems (particularly for disease diagnosis), plants and food science is highly desirable. Volatile organic compound (VOC) profiling is a novel area of research where the composition of the VOCs emitted by the biological samples can be correlated to its origin and physiological status. The aim of this project was to investigate the applicability of VOC profiling as a potential complementary tool within metabolomics.In this project the discrimination of bacteria using a novel gas phase separation method was investigated and the development of VOC-based profiling tools for the collections of VOCs emitted from biological samples was also studied. The optimisation and validation of a high throughput method for VOC analysis was achieved and this was used to assess wound healing.VOC metabolite profiling was further extended to the discrimination of S. typhimurium contaminated meat; the study was conducted in parallel with metabolite profiling analysis for the analysis of non-volatile small molecules. Finally, enhanced vibrational spectroscopic techniques were applied to the characterisation and screening of dye molecules in contaminated foodstuffs using Raman spectroscopy. This thesis clearly demonstrates that VOC metabolic profiling is a complementary tool within the metabolomics toolbox, one of its great attractions is that it permits the characterisation of biological samples in a rapid and non-invasive manner. The technique provides detailed chemical information regarding the VOC composition present above the headspace of the sample and can be used to understand its physiological status and biological origin. VOCs metabolite profiling will become a valuable tool for non-invasive analysis of many biological systems. Raman spectroscopy is a sensitive and non-destructive technique which can generate detailed chemical and structural information regarding the analyte under investigation with little or no sample preparation needed. The effect of the weak Raman signal can be significantly amplified by coupling the analyte molecule to surfaces of nanoparticles and demonstrated that it is ideal for analysing aqueous dye solutions in a quantitative manner.
Supervisor: Goodacre, Roy Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.548664  DOI: Not available
Keywords: Metabolomics, VOC, DMS, GC/MS, PDMS, Pyrolysis, PCA, PLS-DA, SERS, SERRS,
Share: