Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547089
Title: Molecular mechanisms of neural induction and patterning in the zebrafish embryo
Author: Pereira da Cruz, Carlos
Awarding Body: University of Exeter
Current Institution: University of Exeter
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The brain is our most complex organ, with an estimated 1011 neurons. With the spinal cord, it forms the central nervous system which controls our movements and our senses, holds our memories and creates our thoughts. Because of this, neurodegenerative disorders can be extremely distressing and a thorough understanding of how the nervous system develops is essential if progress is to be made in finding ways to treat them. Critically, this includes understanding how the nervous system forms, i.e., the nature of the signals that promote neural identity (neural induction) and determine correct positional information (patterning). The zebrafish (Danio rerio) has become established as a model for embryological studies due to ease of experimental manipulation. Taking advantage of this, the aims of this PhD were to contribute to unravelling the molecular mechanisms of neural induction and patterning, using a variety of embryological and molecular methods. In the first project, functional analyses of the eve1 gene identified a key factor for posterior neural development. Eve1 was found to be a critical posteriorising factor, with an additional role in posterior neural induction. An outstanding question in neural induction is the relative contribution to this process of two key developmentally important signalling pathways, Bmp and Fgf. In the second project, differential analyses of maternal versus zygotic Bmp and Fgf signalling revealed crucial maternal roles for these two pathways in neural development as neural and epidermal capacitators. The results further suggested that Fgf signalling may be the critical neural inducer. Finally, as a third project, a zebrafish ectodermal explant assay was developed using the organiser-deficient ichabod mutant. The aim was to develop a system to analyse how key molecules directly affect ectoderm and neural development, free of mesoderm and endoderm influences, as signalling from these layers can directly or indirectly influence neural development.
Supervisor: Kudoh, Tetsuhiro Sponsor: BBSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.547089  DOI: Not available
Keywords: Neural induction ichabod Bmp Fgf evx ectoderm
Share: