Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.545121
Title: Elastic-plastic analysis of complete building structures
Author: Önen, Yusuf H.
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1973
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
In this Thesis, details of a proposed method for the elastic-plastic failure load analysis of complete building structures are given. In order to handle the problem, a computer programme in Atlas Autocode is produced. The structures consist of a number of parallel shear walls and intermediate frames connected by floor slabs. The results of an experimental investigation are given to verify the theoretical results and to demonstrate various factors that may influence the behaviour of these structures. Large full scale practical structures are also analysed by the proposed method and suggestions are made for achieving design economy as well as for extending research in various aspects of this field. The existing programme for elastic-plastic analysis of large frames is modified to allow for the effect of composite action of structural members, i.e. reinforced concrete floor slabs and the supporting steel beams. This modified programme is used to analyse some framed type structures with composite action as well as those which incorporate plates and shear walls. The results obtained are studied to ascertain the influence of composite action and other factors on the load carrying capacity of both bare frames and complete building structures. The theoretical failure load presented in this thesis does not predict the overall failure load of the structure nor does it predict the partial failure load of the shear walls and slabs but it merely predicts the partial failure load of a single frame and assumes that the loss of stiffess of such a frame renders the overall structure unusable. For most structures the analysis proposed in this thesis is likely to break down prematurely due to the failure of the slab and shear wall system and this factor must be taken into account in any future work on such structures. The experimental work reported in this thesis is acknowledged to be unsatisfactory as a verification of the limited theory proposed. In particular perspex was not found to be a suitable material for testing at high loads, micro-concrete may be more suitable.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.545121  DOI: Not available
Keywords: Civil Engineering
Share: