Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.544918
Title: The influence of cutting tool geometry upon aspects of chip flow and tool wear: a theoretical, three dimensional examination of the cutting geometry and the shape of the twist drill
Author: Webb, Peter M.
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1990
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This work is undertaken in the attempt to understand the processes at work at the cutting edge of the twist drill. Extensive drill life testing performed by the University has reinforced a survey of previously published information. This work demonstrated that there are two specific aspects of drilling which have not previously been explained comprehensively. The first concerns the interrelating of process data between differing drilling situations, There is no method currently available which allows the cutting geometry of drilling to be defined numerically so that such comparisons, where made, are purely subjective. Section one examines this problem by taking as an example a 4.5mm drill suitable for use with aluminium. This drill is examined using a prototype solid modelling program to explore how the required numerical information may be generated. The second aspect is the analysis of drill stiffness. What aspects of drill stiffness provide the very great difference in performance between short flute length, medium flute length and long flute length drills? These differences exist between drills of identical point geometry and the practical superiority of short drills has been known to shop floor drilling operatives since drilling was first introduced. This problem has been dismissed repeatedly as over complicated but section two provides a first approximation and shows that at least for smaller drills of 4. 5mm the effects are highly significant. Once the cutting action of the twist drill is defined geometrically there is a huge body of machinability data that becomes applicable to the drilling process. Work remains to interpret the very high inclination angles of the drill cutting process in terms of cutting forces and tool wear but aspects of drill design may already be looked at in new ways with the prospect of a more analytical approach rather than the present mix of experience and trial and error. Other problems are specific to the twist drill, such as the behaviour of the chips in the flute. It is now possible to predict the initial direction of chip flow leaving the drill cutting edge. For the future the parameters of further chip behaviour may also be explored within this geometric model.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.544918  DOI: Not available
Keywords: Production and Manufacturing Engineering ; Mechanical Engineering
Share: