Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.544717
Title: Gasification of rubberwood in a downdraft gasifier
Author: Hoi, W. H.
ISNI:       0000 0001 3601 6651
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1991
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The objectives of this research were to investigate the perforamnce of a rubberwood gasifier and engine with electricity generation and to identify opportunities for the implementation of such a system in Malaysia. The experimental work included the design, fabrication and commissioning of a throated downdraft gasifier in Malaysia. The gasifier was subsequently used to investigate the effect of moisture content, dry wood capacity and particle size of rubberwood on gasifier performance. Additional experiments were also conducted to investigate the influence of two different nozzle numbers and two different throat diameters on tar cracking. A total of 101 runs were completed during the duration of the research. From the experimental data, the average mass balance was found to be 92.65%. The average energy balance over the gasifier to hot raw gas was 98.7%, to cold clean gas was 102.4% and over the complete system was 101.9%. The heat loss from the gasifier was estimated to range from 10-26% of the chemical energy of the feedstock. From the downstream operation, the heat loss was estimated to range from 17-37% of the chemical energy of rubberwood feedstock. The maximum throughput for stable operation was found to be 60-70% of the maximum dry wood capacity. The gasifier was found to have a maximum turndown ratio of 5:1. It is also postulated that the phenomenon of turndown of the gasifier is due to a `bubble theory' occurring at the gasification zone, and this hypothesis is explained. For stable power output, the working range of the engine was found to be 5-33.5 kWe. The thermal efficiency and diesel displacement of the engine was found to be 17-18% and 65-70% respectively. The research also showed that rubberwood gasification in Malaysia is feasible if the price of diesel is above MR35/l and the price of wood is below MR120/tonne.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.544717  DOI: Not available
Keywords: Applied Chemistry ; Chemical Engineering
Share: