Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541855
Title: Generalised Bayesian matrix factorisation models
Author: Mohamed, Shakir
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Factor analysis and related models for probabilistic matrix factorisation are of central importance to the unsupervised analysis of data, with a colourful history more than a century long. Probabilistic models for matrix factorisation allow us to explore the underlying structure in data, and have relevance in a vast number of application areas including collaborative filtering, source separation, missing data imputation, gene expression analysis, information retrieval, computational finance and computer vision, amongst others. This thesis develops generalisations of matrix factorisation models that advance our understanding and enhance the applicability of this important class of models. The generalisation of models for matrix factorisation focuses on three concerns: widening the applicability of latent variable models to the diverse types of data that are currently available; considering alternative structural forms in the underlying representations that are inferred; and including higher order data structures into the matrix factorisation framework. These three issues reflect the reality of modern data analysis and we develop new models that allow for a principled exploration and use of data in these settings. We place emphasis on Bayesian approaches to learning and the advantages that come with the Bayesian methodology. Our port of departure is a generalisation of latent variable models to members of the exponential family of distributions. This generalisation allows for the analysis of data that may be real-valued, binary, counts, non-negative or a heterogeneous set of these data types. The model unifies various existing models and constructs for unsupervised settings, the complementary framework to the generalised linear models in regression. Moving to structural considerations, we develop Bayesian methods for learning sparse latent representations. We define ideas of weakly and strongly sparse vectors and investigate the classes of prior distributions that give rise to these forms of sparsity, namely the scale-mixture of Gaussians and the spike-and-slab distribution. Based on these sparsity favouring priors, we develop and compare methods for sparse matrix factorisation and present the first comparison of these sparse learning approaches. As a second structural consideration, we develop models with the ability to generate correlated binary vectors. Moment-matching is used to allow binary data with specified correlation to be generated, based on dichotomisation of the Gaussian distribution. We then develop a novel and simple method for binary PCA based on Gaussian dichotomisation. The third generalisation considers the extension of matrix factorisation models to multi-dimensional arrays of data that are increasingly prevalent. We develop the first Bayesian model for non-negative tensor factorisation and explore the relationship between this model and the previously described models for matrix factorisation.
Supervisor: Ghahramani, Zoubin Sponsor: ]
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.541855  DOI:
Keywords: Bayesian ; Matrix factorisation ; MCMC ; Machine learning ; Tensor factorisation ; Sparsity
Share: