Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541849
Title: Molecular pathogenesis of MALT lymphoma
Author: Hamoudi, Rifat A.
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2010
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Mucosa associated lymphoid tissue (MALT) lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH andt(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-κB pathway. Gastric MALT lymphomas harbouring such translocation do not respond to Helicobacter pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of MALT lymphoma with and without chromosome translocation, 24 cases (15 translocation-positive and 9 translocation-negative) of MALT lymphomas together with 7 follicular lymphomas and 7 mantle cell lymphomas were analysed by Affymetrix gene expression microarray platform. Unsupervised clustering showed that cases of MALT lymphoma were clustered as a single branch. However, within the MALT lymphoma group, translocation-positive cases were intermingled with translocation-negative cases. Gene set enrichment analysis (GSEA) of the NF-κB target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas were characterized by an enhanced expression of NF-κB target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS. Separate analyses of the genes differentially expressed between translocation-positive and negative cases and measurement of gene ontology term in these differentially expressed genes by hypergeometric test reinforced the above findings by GSEA. The differential expression of these NF-κB target genes between MALT lymphoma with and without translocation was confirmed by quantitative RT-PCR and immunohistochemistry or Western blot. Expression of TLR6, in the presence of TLR2, enhanced both API2-MALT1 and BCL10 mediated NF-κB activation in vitro. In addition, there was cooperation between expression of BCL10, MALT1 or API2-MALT1, and stimulation of the antigen receptor or CD40 or TLR in NF-κB activation as shown by both reporter assay and IκBα degradation. Interestingly, expression of BCL10 but not API2-MALT1 and MALT1, in the presence of LPS stimulation, also triggered IκBβ degradation, suggesting activation of different NF-κB dimers between these oncogenic products. Study by co-immunoprecipitation showed that BCL10 directly interacts with MALT1. Sub-cellular localisation experiments in BJAB B-cells, showed that BCL10 localisation was affected by MALT1. When BCL10 was over-expressed, the protein was predominantly expressed in the nuclei, but when MALT1 was over-expressed, BCL10 was mainly localised in the cytoplasm. When both BCL10 and MALT1 were over-expressed, BCL10 was expressed in the cytoplasm in the early hours when the protein level was low, but in both the cytoplasm and nuclei after 9 hours when the protein level was high. Over-expression of API2-MALT1 did not shown any apparent effect on BCL10 sub-cellular localisation in vitro. Finally, comparison of MALT lymphoma expression microarray with other lymphomas showed lactoferrin to be highly expressed in MALT lymphoma. This was confirmed by qRT-PCR, showing lactoferrin to be significantly over-expressed in MALT lymphoma compared to FL and MCL. Thus lactoferrin may be a potential marker for MALT lymphoma.
Supervisor: Du, Ming Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.541849  DOI: Not available
Keywords: Expression microarray ; MALT lymphoma ; immunohistochemistry ; qRT-PCR ; bioinformatics ; functional analysis ; reporter assay ; cellular localisation ; molecular mechanism ; molecular biology
Share: