Title:

Graphical representations of Ising and Potts models : stochastic geometry of the quantum Ising model and the spacetime Potts model

Statistical physics seeks to explain macroscopic properties of matter in terms of microscopic interactions. Of particular interest is the phenomenon of phase transition: the sudden changes in macroscopic properties as external conditions are varied. Two models in particular are of great interest to mathematicians, namely the Ising model of a magnet and the percolation model of a porous solid. These models in turn are part of the unifying framework of the randomcluster representation, a model for random graphs which was first studied by Fortuin and Kasteleyn in the 1970's. The randomcluster representation has proved extremely useful in proving important facts about the Ising model and similar models. In this work we study the corresponding graphical framework for two related models. The first model is the transverse field quantum Ising model, an extension of the original Ising model which was introduced by Lieb, Schultz and Mattis in the 1960's. The second model is the spacetime percolation process, which is closely related to the contact model for the spread of disease. In Chapter 2 we define the appropriate 'spacetime' randomcluster model and explore a range of useful probabilistic techniques for studying it. The spacetime Potts model emerges as a natural generalization of the quantum Ising model. The basic properties of the phase transitions in these models are treated in this chapter, such as the fact that there is at most one unbounded fkcluster, and the resulting lower bound on the critical value in Z. In Chapter 3 we develop an alternative graphical representation of the quantum Ising model, called the randomparity representation. This representation is based on the randomcurrent representation of the classical Ising model, and allows us to study in much greater detail the phase transition and critical behaviour. A major aim of this chapter is to prove sharpness of the phase transition in the quantum Ising model  a central issue in the theory  and to establish bounds on some critical exponents. We address these issues by using the randomparity representation to establish certain differential inequalities, integration of which give the results. In Chapter 4 we explore some consequences and possible extensions of the results established in Chapters 2 and 3. For example, we determine the critical point for the quantum Ising model in Z and in 'starlike' geometries.
