Use this URL to cite or link to this record in EThOS:
Title: Sketching-based skeleton extraction
Author: Zheng, Qingzheng
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2011
Availability of Full Text:
Access through EThOS:
Access through Institution:
Articulated character animation can be performed by manually creating and rigging a skeleton into an unfolded 3D mesh model. Such tasks are not trivial, as they require a substantial amount of training and practice. Although methods have been proposed to help automatic extraction of skeleton structure, they may not guarantee that the resulting skeleton can help to produce animations according to user manipulation. We present a sketching-based skeleton extraction method to create a user desired skeleton structure which is used in 3D model animation. This method takes user sketching as an input, and based on the mesh segmentation result of a 3D mesh model, generates a skeleton for articulated character animation. In our system, we assume that a user will properly sketch bones by roughly following the mesh model structure. The user is expected to sketch independently on different regions of a mesh model for creating separate bones. For each sketched stroke, we project it into the mesh model so that it becomes the medial axis of its corresponding mesh model region from the current viewer perspective. We call this projected stroke a “sketched bone”. After pre-processing user sketched bones, we cluster them into groups. This process is critical as user sketching can be done from any orientation of a mesh model. To specify the topology feature for different mesh parts, a user can sketch strokes from different orientations of a mesh model, as there may be duplicate strokes from different orientations for the same mesh part. We need a clustering process to merge similar sketched bones into one bone, which we call a “reference bone”. The clustering process is based on three criteria: orientation, overlapping and locality. Given the reference bones as the input, we adopt a mesh segmentation process to assist our skeleton extraction method. To be specific, we apply the reference bones and the seed triangles to segment the input mesh model into meaningful segments using a multiple-region growing mechanism. The seed triangles, which are collected from the reference bones, are used as the initial seeds in the mesh segmentation process. We have designed a new segmentation metric [1] to form a better segmentation criterion. Then we compute the Level Set Diagrams (LSDs) on each mesh part to extract bones and joints. To construct the final skeleton, we connect bones extracted from all mesh parts together into a single structure. There are three major steps involved: optimizing and smoothing bones, generating joints and forming the skeleton structure. After constructing the skeleton model, we have proposed a new method, which utilizes the Linear Blend Skinning (LBS) technique and the Laplacian mesh deformation technique together to perform skeleton-driven animation. Traditional LBS techniques may have self-intersection problem in regions around segmentation boundaries. Laplacian mesh deformation can preserve the local surface details, which can eliminate the self-intersection problem. In this case, we make use of LBS result as the positional constraint to perform a Laplacian mesh deformation. By using the Laplacian mesh deformation method, we maintain the surface details in segmentation boundary regions. This thesis outlines a novel approach to construct a 3D skeleton model interactively, which can also be used in 3D animation and 3D model matching area. The work is motivated by the observation that either most of the existing automatic skeleton extraction methods lack well-positioned joints specification or the manually generated methods require too much professional training to create a good skeleton structure. We dedicate a novel approach to create 3D model skeleton based on user sketching which specifies articulated skeleton with joints. The experimental results show that our method can produce better skeletons in terms of joint positions and topological structure.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available