Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540505
Title: Dynamic contrast-enhanced MRI of breast cancer at 3T
Author: Che Ahmad, Azlan
Awarding Body: University of Aberdeen
Current Institution: University of Aberdeen
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
3T MRI provides higher signal-to-noise ratio images compared to lower field machines. However, a major drawback of 3T MRI is a higher B1 transmission-field inhomogeneity across the field-of-view compared to imaging at lower fields. B1-field mapping was performed on volunteers using a Philips 3.0T MR scanner and a typical head-first prone patient positioning technique. The B1-field transmitted in the breasts was found to be reduced towards the right side of the body. In some volunteers, the B1-field was reduced to about one-half of the nominal field in the right breast. To minimize the B1 inhomogeneity artefacts, a saturation recovery snapshot FLASH (SRSF) imaging sequence was proposed. Different saturation techniques were assessed. The best saturation efficiency was produced by Hoffmann’s saturation method. By using Hoffmann’s SRSF sequence, the error in the enhancement ratio (ER) can be reduced to about one half compared to imaging obtained using typical FLASH sequence in the presence of a 50% B1-field reduction. Other techniques i.e. bilateral power optimization and a dedicated patient support system were also tested. Both of these approaches produced substantial reductions of the B1 inhomogeneity seen with the standard technique. To address the effects of the native T1 (T10) of different tissues on DCE-MRI, novel enhancement factor indices calculated using SRSF sequence images were introduced and assessed. Computer simulations and gel phantom experiments showed that less error was observed in the indices calculated compared to the ER calculated using the conventional and widely used FLASH sequence. Furthermore, the effect of B1-field inhomogeneity on the novel indices is also reduced. One of the indices proposed is directly related to the contrast agent concentration. The theory and results presented show that the SRSF pulse sequence and the quantification techniques proposed have the potential to improve the accuracy of breast DCE-MRI at 3T.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.540505  DOI: Not available
Keywords: Magnetic resonance imaging ; Breast ; Cancer cells ; Medical physics ; Biomedical engineering
Share: