Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538484
Title: Optimization of Fischer-Tropsch plant
Author: Lee, Hyun-Jung
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Fischer-Tropsch synthesis is the technology for converting fuel feedstocks such as natural gas and coal into transportation fuels and heavy hydrocarbons. There is scope for research and development into integrated processes utilising synthesis gas for the production of a wide range of hydrocarbons. For this purpose there should be strategies for the development of Fischer-Tropsch processes, which consider both economic and technological feasibilities. The aim of this study was to optimize Fischer Tropsch Plants in order to produce gasoline and gas oil by investigating the benefits of recycling & co-feeding of unconverted gas, undesired compounds, and lighter hydrocarbons over iron-based catalysts in order to save on capital and operating costs. This involved development of FT models for both two-phase and three-phase reactors. The kinetic parameters for these models were estimated using optimization with MATLAB fitting to experimental data and these models were then applied to ASPEN HYSYS flowsheets in order to simulate nine different Fischer-Tropsch plant designs. The methodology employed involved qualitative modelling using Driving Force Analysis (DFA) which indicates the necessity of each compound for the Fischer-Tropsch reactions and mechanism. This also predicts each compounds influence on the selectivity of different products for both two-phase and three-phase reactors and for both pure feeding and co-feeding arrangements. In addition, the kinetic models for both two-phase and three-phase reactor were modified to account for parameters such as the size of catalyst particles, reactor diameter and the type of active sites used on the catalyst in order to understand and quantify their effects. The kinetic models developed can describe the hydrocarbon distributions consistently and accurately over large ranges of reaction conditions (480-710K, 0.5-2.5MPa, and H2/CO ratio: 0.5-2.5) over an iron-based catalyst for once-through processes. The effect of recycling and co-feeding on the iron-based catalyst was also investigated in the two reactor types. It was found that co-feeding unwanted compounds to synthesis gas increases the production of hydrocarbons. This recycling and co-feeding led to an increase in H2/CO feed ratio and increased selectivity towards C5+ products in addition to a slightly increased production of light hydrocarbons (C1-C4). Finally, the qualitative model is compared with the quantitative models for both two-phase and three-phase reactors and using both pure feeding and co-feeding with the same reactor conditions. According to the detailed quantitative models developed, in order to maximize hydrocarbon production pressures of 2MPa, temperatures of 450K and a H2/CO feed ratio of 2:1 are required. The ten different Fischer-Tropsch plant cases were based on Fischer-Tropsch process. FT reactor models were built in ASPEN HYSYS and validated with real FT plant data. The results of the simulation and optimization supported the proposed process plant changes suggested by qualitative analysis of the different components influence. The plants involving recycling and co-feeding were found to produce higher quantities of gasoline and gas oil. The proposed heuristic regarding the economic scale of the optimized model was also evaluated and the capital cost of the optimized FT plant reduced comparison with the real FT plant proposed by Gerard. Therefore, the recycling and co-feeding to FT reactor plant was the best efficiency to produce both gasoline and gas oil.
Supervisor: Wall, Kevin ; Garforth, Arthur Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.538484  DOI: Not available
Keywords: Fischer-Tropsch Synthesis ; Optimization
Share: