Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538397
Title: Advanced industrial X-ray computed tomography for defect detection and characterisation of composite structures
Author: Amos, Mathew
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
X-ray Computer Tomography (CT) is well suited to the inspection of Fibre-Reinforced-Plastic (FRP) composite materials. However, a range of limitations currently restrict its uptake. The aim of the present research was to develop advanced inspection procedures that overcome these limitations and increase the scope of composite structures that can be inspected by industrial cone beam CT. Region of Interest (ROI) CT inspection of FRP laminated panels was investigated and two data completion methods developed to overcome reconstruction errors caused by truncated projection data. These allow accurate, highly magnified regions to be reconstructed on objects that extend beyond the Field-of-View (FOV) of the detector. The first method extended the truncated projection data using a cosine signal tailing off to zero attenuation. This method removed the strong 'glowing' artefacts but an inherent error existed across the reconstructed ROI. This did not affect the defect detectability of the inspection but was viewed as problematic for applications requiring accurate density measurements. The second method used prior knowledge of the test object so that a model could be created to estimate the missing data. This technique removed errors associated with ROI reconstruction thus significantly improving the accuracy. Techniques for extending the FOV were developed and applied to the inspection of FRP wind turbine blades; over 1.5X larger than the conventional scanning FOV. Two data completion methods were developed requiring an asymmetrically positioned detector. The first was based on the cosine tailing technique and the second used fan beam ray redundancy properties to estimate the missing data. Both produced accurate reconstructions for the 'offset' projection data, demonstrating that it was possible to approximately double the FOV. The cosine tailing method was found to be the more reliable. A dual energy image CT technique was developed to extend the optimum dynamic range and improve defect detectability for multi-density objects. This was applied to FRP composite/Titanium lap joints showing improved detectability of both volumetric and planar defects within the low density FRP. The dual energy procedure was validated using statistical performance measures on a specially fabricated multi-density phantom. The results showed a significant improvement in the detail SNR when compared to conventional CT scans.
Supervisor: Withers, Philip Sponsor: TWI Ltd ; The Engineering and Physical Sciences Research Board (EPSRC)
Qualification Name: Thesis (Eng.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.538397  DOI: Not available
Keywords: X-ray Computed Tomography ; Composites
Share: