Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535995
Title: Cooperative wireless networks
Author: Sheng, Zhengguo
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
In the last few years, there have been a lot of interests in wireless ad-hoc networks as they have remarkable commercial and military applications. Such wireless networks have the benefit of avoiding a wired infrastructure. However, signal fading is a severe problem for wireless communications particularly for the multi-hop transmissions in the ad-hoc networks. Cooperative communication has been proposed as an effective way to improve the quality of wireless links. The key idea is to have multiple wireless devices at different locations cooperatively share their antenna resources and aid each other’s transmission. In this thesis, we develop effective algorithms for cooperative wireless ad-hoc networks, and the performance of cooperative communication is measured based on various criteria, such as cooperative region, power ratio and end-to-end performance. For example, the proposed interference subtraction and supplementary cooperation algorithms can significantly improve network throughput of a multi-hop routing. Comprehensive simulations are carried out for all the proposed algorithms and performance analysis, providing quantitative evidence and comparison over other schemes. In our view, the new cooperative communication algorithms proposed in this research enable wireless ad-hoc networks to improve radio unreliability and meet future application requirements of high-speed and high-quality services with high energy efficiency. The acquired new insights on the network performance of the proposed algorithms can also provide precise guidelines for efficient designs of practical and reliable communications systems. Hence these results will potentially have a broad impact across a range of related areas, including wireless communications, network protocols, radio transceiver design and information theory.
Supervisor: Leung, Kin Sponsor: International Technology Alliance
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.535995  DOI: Not available
Share: