Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535780
Title: Nonassociative constructions from inverse property quasigroups
Author: Klim, Jennifer
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The notion of a Hopf algebra has been generalized many times by weakening certain properties; we introduce Hopf quasigroups which weaken the associativity of the algebra. Hopf quasigroups are coalgebras with a nonassociative product satisfying certain conditions with the antipode re ecting the properties of classical inverse property quasigroups. The de nitions and properties of Hopf quasigroups are dualized to obtain a theory of Hopf coquasigroups, or `algebraic quasigroups'. In this setting we are able to study the coordinate algebra over a quasigroup, and in particular the 7-sphere. One particular class of Hopf quasigroups is obtained by taking a bicrossproduct of a subgroup and a set of coset representatives, in much the same way that Hopf algebras are obtained from matched pairs of groups. Through this construction the bicrossproduct can also be given the structure of a quasi-Hopf algebra. We adapt the theory of Hopf algebras to Hopf (co)quasigroups, de ning integrals and Fourier transformations on these objects. This leads to the expected properties of separable and Frobenius Hopf coquasigroups and notions of (co)semisimplicity.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.535780  DOI: Not available
Keywords: Mathematics
Share: