Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534338
Title: In vitro tendon tissue engineering
Author: Qiu, Yiwei
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2010
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
Tendon, ligament, and joint capsular injuries represent 45% of the 32 million musculoskeletal injuries each year in the United States. Tendon injuries are especially common, requiring surgical repair for the shoulder’s rotator cuff tendons (51,000 per year), the Achilles tendon (44,000 per year), and the patellar tendon (42,000 per year). Tissue engineering provides an alternative in the treatment of tendon lesions through replacement of an injured tendon segment. The purpose of this study was to develop a tendon construct in vitro for clinical reconstructive surgery. Human tenocytes were isolated from hamstring tendons of patients who had undergone anterior cruciate ligament (ACL) surgeries. These tenocytes were cultured with culture media (α-MEM) supplemented with various concentrations of foetal bovine serum (FBS) (0%, 1%, 5% and 10%) and in the presence of different growth factors such as PDGFBB (0, 5, 10 and 50ng/ml), basic FGF (0, 5, 10 and 50ng/ml), IGF-1 (0, 10 and 50ng/ml) and TGFβ-3 (0, 1 and 10ng/ml). Fractional factorial design was utilized to select the combinations of growth factors that supported the following criteria: (1) the maximal cell proliferation with a minimum differentiation of the tenocytes in the presence of the least concentration of FBS possible and (2) maintaining cell survival and promoting tenocyte differentiation in FBS free culture media. The results have shown that: (i) The tenocyte cell number when cultured for 14 days in media supplemented with 1% FBS, 50ng/ml PDGFBB and 50ng/ml bFGF matched that of the positive control (10% FBS-treated cells). Not only was the collagen synthesis significantly reduced in these growth factor-treated cultures compared to positive control tenocytes, but also a significant inhibition of the mRNA expression of various tenocyte differentiation markers (Scleraxis, Tenomodulin, Collagen type I and Decorin) was evident. IGF-1 did not promote significant cell proliferation under low serum conditions but did induce tenocyte differentiation in vitro. Examination of the cell morphology confirmed that tenocytes were capable of less differentiation when cultured with 1% FBS, 50ng/ml PDGFBB and 50ng/ml bFGF, this culture condition was termed “the expansion phase”; (ii) The cell survival was maintained for up to 14 days in serum free culture media supplemented with 50ng/ml IGF-1 and 10ng/ml TGFβ-3 whilst cell differentiation was enhanced and evident by the increase in collagen synthesis and cell morphology. Furthermore, mRNA expression of the aforementioned cell differentiation markers were also significantly increased, this culture condition was termed “the differentiation phase”; (iii) By combining the culture condition optimized for the expansion and differentiation phase sequentially, it was possible to maintain a long term 2-D tenocyte culture in vitro for up to 28 days. In these cultures, the presence of dense collagen formation was clearly evident whereas in positive control group (10% FBS group) such observation was not noted even after prolonged culturing period of up to 45 days. These results suggested that the sequential treatment of tenocytes with growth factors identified for the expansion and differentiation phases was significantly more superior than the standard 10% FBS treatment; (iv) By combining the expansion and differentiation phases optimized for the 2-D cultures, it was possible to maintain human tenocytes in a 3-D scaffold (Bombix silk) for up to 28 days. The tendon like constructs that were formed, macroscopically and microscopically resembled the human hamstring tendon. This observation was confirmed by using H&E staining, scanning electron microscopy and by detecting collagen type I immunohistochemically; (v) It was possible to further validate these findings using in vivo animal models. This was undertaken by implanting the tenocytes cultured sequentially in the defined culture media described above, into the quadriceps of Balb/c nude male mice for up to 30 days. The nature and specificity of the tendon like structure that was formed after this implantation was investigated by H&E staining and immunohistochemistry. It was revealed that the culture conditions that were optimized during the expansion and differentiation phases were suitable for generating a human tendon reconstruct; a finding which is of significance due to its potential for tendon reconstructive surgery.
Supervisor: Sabokbar, Afsie ; Xia, Zhidao Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.534338  DOI: Not available
Keywords: Orthopaedics ; tissue engineering ; tendon ; growth factors
Share: