Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533620
Title: Design and modelling of a photovoltaic driven fan solar air heater for drying woodchip in Scotland
Author: Clemente, Andres
Awarding Body: Edinburgh Napier University
Current Institution: Edinburgh Napier University
Date of Award: 2011
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
In the wood fuel supply chain, the water contained in the product determines one aspect of the quality of the wood. It is necessary to reduce the moisture content (MC) of the wood in order to reduce transport and storing costs and also to increase the heating value of the wood. In this thesis a solar thermal application has been developed to dry woodchips using exclusively solar energy. The novel solar woodchip dryer comprises a small woodchip dryer and a solar air thermal system (SATS) to increase the temperature of the drying air. The particularity of this woodchip dryer is that the input air flow is governed by a photovoltaic driven fan. Based on the experimental results obtained, the woodchip dryer and the SATS thermal performance were modelled and a simulation tool for predicting the dried woodchip production during a period of time has been developed. Two small capacity dryers, a thin and a thick layer dryer, have been designed and built to dry woodchip based on the flow capacity of the SATS. The drying performances are studied for both configurations comparing the drying times, drying rates and efficiencies at different test conditions. The drying curves obtained from each test are modelled as a function of key parameters, temperature and velocity employing the Page model equation. Based on the experimental results, a drying model has been successfully developed to predict the MC when the woodchip dryer operates within a range of drying conditions. A quantitative and qualitative analysis of the SATS thermal performance has been conducted employing various solar air collector configurations under Scottish weather conditions. The pneumatic characteristics of the solar dryer including the dryer are determining for the analysis of the system performance. Because of the PV driven fan electrical characteristics, the SATS presents a unique operation regime in which air flow depends exclusively on solar radiation. Thus the SATS thermal performance has been successfully modelled as a function of irradiance. The study necessarily includes the effect of environmental factors such as wind and cloudiness in the transient regime. The potential of using a solar woodchip dryer has been assessed based on the results obtained from modelling the dryer and the SATS together. The feasibility and employability of using the solar dryer for drying woodchips is discussed considering the productivity, the energy savings, costs and integration.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Phd
EThOS ID: uk.bl.ethos.533620  DOI: Not available
Keywords: TD Environmental technology. Sanitary engineering
Share: