Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531359
Title: Self-organization and management of wireless sensor networks
Author: Asim, Muhammad
Awarding Body: Liverpool John Moores University
Current Institution: Liverpool John Moores University
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Wireless sensor networks (WSNs) are a newly deployed networking technology consisting of multifunctional sensor nodes that are small in size and communicate over short distances. These sensor nodes are mainly in large numbers and are densely deployed either inside the phenomenon or very close to it. They can be used for various application areas (e.g. health, military, home). WSNs provide several advantages over traditional networks, such as large-scale deployment, highresolution sensed data, and application adaptive mechanisms. However, due to their unique characteristics (having dynamic topology, ad-hoc and unattended deployment, huge amount of data generation and traffic flow, limited bandwidth and energy), WSNs pose considerable challenges for network management and make application development nontrivial. Management of wireless sensor networks is extremely important in order to keep the whole network and application work properly and continuously. Despite the importance of sensor network management, there is no generalize solution available for managing and controlling these resource constrained WSNs. In network management of WSNs, energy-efficient network selforganization is one of the main challenging issues. Self-organization is the property which the sensor nodes must have to organize themselves to form the network. Selforganization of WSNs is challenging because of the tight constraints on the bandwidth and energy resources available in these networks. A self organized sensor network can be clustered or grouped into an easily manageable network. However, existing clustering schemes offer various limitations. For example, existing clustering schemes consume too much energy in cluster formation and re-formation. This thesis presents a novel cellular self-organizing hierarchical architecture for wireless sensor networks. The cellular architecture extends the network life time by efficiently utilizing nodes energy and support the scalability of the system. We have analyzed the performance of the architecture analytically and by simulations. The results obtained from simulation have shown that our cellular architecture is more energy efficient and achieves better energy consumption distribution. The cellular architecture is then mapped into a management framework to support the network management system for resource constraints WSNs. The management framework is self-managing and robust to changes in the network. It is application-co-operative and optimizes itself to support the unique requirements of each application. The management framework consists of three core functional areas i.e., configuration management, fault management, and mobility management. For configuration management, we have developed a re-configuration algorithm to support sensor networks to energy-efficiently re-form the network topology due to network dynamics i.e. node dying, node power on and off, new node joining the network and cells merging. In the area of fault management we have developed a new fault management mechanism to detect failing nodes and recover the connectivity in WSNs. For mobility management, we have developed a two phase sensor relocation solution: redundant mobile sensors are first identified and then relocated to the target location to deal with coverage holes. All the three functional areas have been evaluated and compared against existing solutions. Evaluation results show a significant improvement in terms of re-configuration, failure detection and recovery, and sensors relocation.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.531359  DOI: Not available
Keywords: QA75 Electronic computers. Computer science
Share: