Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.530307
Title: Large-scale 3D environmental modelling and visualisation for flood hazard warning
Author: Wang, Chen
Awarding Body: University of Bradford
Current Institution: University of Bradford
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
3D environment reconstruction has received great interest in recent years in areas such as city planning, virtual tourism and flood hazard warning. With the rapid development of computer technologies, it has become possible and necessary to develop new methodologies and techniques for real time simulation for virtual environments applications. This thesis proposes a novel dynamic simulation scheme for flood hazard warning. The work consists of three main parts: digital terrain modelling; 3D environmental reconstruction and system development; flood simulation models. The digital terrain model is constructed using real world measurement data of GIS, in terms of digital elevation data and satellite image data. An NTSP algorithm is proposed for very large data assessing, terrain modelling and visualisation. A pyramidal data arrangement structure is used for dealing with the requirements of terrain details with different resolutions. The 3D environmental reconstruction system is made up of environmental image segmentation for object identification, a new shape match method and an intelligent reconstruction system. The active contours-based multi-resolution vector-valued framework and the multi-seed region growing method are both used for extracting necessary objects from images. The shape match method is used with a template in the spatial domain for a 3D detailed small scale urban environment reconstruction. The intelligent reconstruction system is designed to recreate the whole model based on specific features of objects for large scale environment reconstruction. This study then proposes a new flood simulation scheme which is an important application of the 3D environmental reconstruction system. Two new flooding models have been developed. The first one is flood spreading model which is useful for large scale flood simulation. It consists of flooding image spatial segmentation, a water level calculation process, a standard gradient descent method for energy minimization, a flood region search and a merge process. The finite volume hydrodynamic model is built from shallow water equations which is useful for urban area flood simulation. The proposed 3D urban environment reconstruction system was tested on our simulation platform. The experiment results indicate that this method is capable of dealing with complicated and high resolution region reconstruction which is useful for many applications. When testing the 3D flood simulation system, the simulation results are very close to the real flood situation, and this method has faster speed and greater accuracy of simulating the inundation area in comparison to the conventional flood simulation models
Supervisor: Wan, Tao Ruan ; Palmer, Ian J. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.530307  DOI: Not available
Keywords: Large-scale ; Digital Terrain Model ; Active Contour Based Image Segmentation ; Intelligent Shape Match Method ; 3D Environmental reconstruction ; Flood Spreading ModelFlood Spreading Model ; Finite Volume Hydrodynamic Model ; 3D flood simulation
Share: