Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.530248
Title: Multifunctional inorganic hollow fibre membranes for chemical reactions
Author: Gbenedio, Ejirooghene Patrick
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Over the last few decades, the availability of inorganic membranes which can withstand high temperatures and harsh chemical environments has resulted in a wide range of opportunities for the application of membranes in chemical reactions. In particular, the combination of membrane separation and catalytic reaction in a single operating unit is an attractive way to increase conversions, to achieve better yields and to make more efficient use of natural resources in many reactions. In this work, a highly compact multifunctional Pd and Pd-Ag/alumina hollow fibre membrane reactor (HFMR) have been developed and applied to catalytic chemical reactions. The developed HFMR consists of a thin and defect free Pd-based membrane coated onto the outer surface of an alumina hollow fibre substrate with a unique asymmetric pore structure, i.e. a sponge-like outer layer and a finger-like inner layer where catalyst is deposited. In one study, a Pd-Ag layer was coated onto the outer surface of the substrate followed by deposition of sub-micron sized Pt(0.5wt.%)/γ-alumina catalysts into the finger-like voids of the substrates. This design achieved propane conversion as high as 42 % at the initial stage of the reaction at 723 K and space-time yields (STY) of the HFMR were approximately 60 times higher than that of a fixed bed reactor (FBR). In order to further increase catalytic surface area in the reaction zone, a sol-gel method was used to deposit Pt(1 wt.%)/SBA-15 catalysts into the finger-like voids of a substrate to develop a Pd/alumina HFMR. Benefiting from this novel design, the functionalized alumina hollow fibre substrates with surface area/volume values of up to 1918.4 m2/m3 possess a specific surface area of about 31.8 m2/g for catalysts. It was observed that in comparison with a conventional FBR, greater propene selectivity and propene yield was achieved by using the HFMR for propane dehydrogenation. The generic advantages of the design of these compact HFMR systems can be applied to further applications such as the water-gas shift reaction, which was also carried out in this study.
Supervisor: Li, Kang Sponsor: EPSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.530248  DOI: Not available
Share: