Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.529055
Title: Transmission congestion management by optimal placement of FACTS devices
Author: Zeraatzade, Mahbube
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis describes the implementation of the Flexible AC Transmission Systems (FACTS) devices to develop a market-based approach to the problem of transmission congestion management in a Balancing Market. The causes, remedies and pricing methods of transmission congestion are briefly reviewed. Balancing Market exists in markets in which most of the trading is done via decentralized bilateral contracts. In these markets only final adjustments necessary to ensure secure system operation is carried out at a centralized Balancing Market. Each market player can participate in the Balancing Market by submitting offers and bids to increase and decrease its initially submitted active generation output. In this research a method is proposed to reduce costs associated with congestion re-dispatch in a Balancing Market by optimal placement of FACTS devices, and in particular Thyristor Controlled Phase Shifter Transformers (TCPST). The proposed technique is applicable to both Mixed Integer Linear Programming (MILP) and Mixed Integer Non-Linear Programming (MINLP). In the MILP a power system network is represented by a simplified DC power flow under a MILP structure and the Market participants' offers and bids are also represented by linear models. Results show that applications of FACTS devices can significantly reduce costs of congestion re-dispatch. The application of the method based on the MINLP creates a nonlinear and non-convex AC OPF problem that might be trapped in local sub-optima solutions. The reliability of the solution that determines the optimal placement of FACTS devices is an important issue and is carried out by investigation of alternative solvers. The behavior of the MINLP solvers is presented and finally the best solvers for this particular optimization problem are introduced. The application of DC OPF is very common in industry. The accuracy of the DC OPF results is investigated and a comparison between the DC and AC OPF is presented.
Supervisor: Irving, M. R. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.529055  DOI: Not available
Keywords: Power systems ; Network planning ; Flexible AC transmission systems
Share: