Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528563
Title: Effects of post weld heat treatments on the fatigue of the inertia welded nickel based superalloy RR1000 at high temperatures
Author: Kimpton, Claire Michelle
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Jul 2030
Access from Institution:
Abstract:
To improve the efficiency of turbine aero engines, higher operating temperatures and weight savings are being investigated. Alloys such as RR1000 are being trialled as they perform better at higher temperatures than current nickel-based superalloys. To achieve weight savings, inertia welding is being trialled for turbine discs but current post weld heat treatments reduce fatigue life. In this investigation, a number of novel post weld heat treatments were trialled aimed at improving post weld microstructure and fatigue properties. Extensive microstructural characterisation and mechanical testing were used to assess the effect of these treatments on both parent and weld materials. Post weld heat treatment (PWHT) was found to have a great effect on the size and distribution of γ' and carbides, particularly when a PWHT temperature of 980ºC or above was used. The effect of this microstructural change on the hardness of the weld and parent material has also been characterised. Extensive total life fatigue testing was carried out at 650ºC. It was found that failure can occur in both the parent and weld material, although it is deduced that the yield stress of the weld needs to be surpassed to see weld failure (plasticity in the weld). Increasing dwell time at peak load reduced the life of these components. Two mechanisms for crack growth were observed with initiation either at the surface or at a large Hf rich particle subsurface. Oxidation was found to have a large effect on both initiation and growth of fatigue cracks. By introducing a sharp pre-fatigue crack into samples, static load testing was used to determine a threshold value of K (stress intensity factor) for growth and growth rates were plotted at different K values. It was seen in these tests that PWHT had a large effect on growth rates and threshold values of K.
Supervisor: Not available Sponsor: Rolls Royce plc ; Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.528563  DOI: Not available
Keywords: TN Mining engineering. Metallurgy
Share: