Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528465
Title: Techniques for improving efficiency and scalability for the integration of information retrieval and databases
Author: Wu, Hengzhi
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis is on the topic of integration of Information Retrieval (IR) and Databases (DB), with particular focuses on improving efficiency and scalability of integrated IR and DB technology (IR+DB). The main purpose of this study is to develop efficient and scalable techniques for supporting integrated IR and DB technology, which is a popular approach today for handling complex queries over text and structured data. Our specific interest in this thesis is how to efficiently handle queries over large-scale text and structured data. The work is based on a technology that integrates probability theory and relational algebra, where retrievals for text and data are to be expressed in probabilistic logical programs such as probabilistic relational algebra or probabilistic Datalog. To support efficient processing of probabilistic logical programs, we proposed three optimization techniques that focus on aspects covered logical and physical layers, which include: scoring-driven query optimization using scoring expression, query processing with top-k incorporated pipeline, and indexing with relational inverted index. Specifically, scoring expressions are proposed for expressing the scoring or probabilistic semantics of implied scoring functions of PRA expressions, so that efficient query execution plan can be generated by rule-based scoring-driven optimizer. Secondly, to balance efficiency and effectiveness so that to improve query response time, we studied methods for incorporating topk algorithms into pipelined query execution engine for IR+DB systems. Thirdly, the proposed relational inverted index integrates IR-style inverted index and DB-style tuple-based index, which can be used to support efficient probability estimation and aggregation as well as conventional relational operations. Experiments were carried out to investigate the performances of proposed techniques. Experimental results showed that the efficiency and scalability of an IR+DB prototype have been improved, while the system can handle queries efficiently on considerable large data sets for a number of IR tasks.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.528465  DOI: Not available
Keywords: Computer Science
Share: