Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528256
Title: A multi-wavelength study of the microwave emission in the Perseus molecular cloud
Author: Tibbs, Christopher Thomas
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2010
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Cosmic Microwave Background (CMB) anisotropy measurements have provided a great insight to the cosmological parameters that define our Universe. Obtaining these measurements to ever higher sensitivity is complicated by the presence of contaminating foregrounds, whose physical understanding is, therefore, critical. The discovery of a dust-correlated emission mechanism in the frequency range 10-100 GHz, known an anomalous microwave emission, has reignited the study of Galactic foregrounds as interstellar medium (ISM) emission mechanisms. This thesis describes the investigation of this anomalous microwave emission, with the aim of improving our understanding of the physical processes causing this emission. Understanding the precise nature and spectral behaviour of this anomalous microwave emission is of critical importance for modelling Galactic foregrounds for current and future sensitive CMB anisotropy experiments (e.g. Planck).Very Small Array (VSA) observations of the dust feature, G159.6-18.5, in the Perseus molecular complex are presented. These observations were reduced and calibrated resulting in the production of a 33 GHz map of the region with ≈7 arcmin angular resolution and an r.m.s. noise level of < 20 mJy/beam. Five dust-correlated features were identified in this map, and the emission in these five features was found to be in excess over the standard Galactic emission processes of free-free and thermal vibrational dust emission, at a level of 2.5-5.6δ. This excess of emission, in combination with the dust correlation, was interpreted as anomalous emission. Various theories have been proposed to explain this anomalous emission, however, evidence is provided showing that the only plausible explanation, consistent with the results found in G159.6-18.5, is that of electric dipole radiation from rapidly spinning dust grains i.e. spinning dust. Intriguingly, the bulk of this spinning dust emission (> 88 %) appears to be originating from a large-scale, diffuse component, and is not concentrated in the five compact components.Having detected this anomalous emission, which is consistent with the spinning dust hypothesis, photometric Spitzer data were completely reprocessed and used in conjunction with the dust emission model, DUSTEM, to characterise the dust within the region. The results of this dust characterisation are presented and were found to tentatively agree with the spinning dust hypothesis.Finally, this work provides evidence illustrating that anomalous emission is a very complex process, and that further work still needs to be performed.
Supervisor: Davis, Richard Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.528256  DOI: Not available
Share: