Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527514
Title: Studies of Cu2ZnSnS4 films prepared by sulfurisation of electrodeposited precursors
Author: Scragg, Jonathan James
ISNI:       0000 0004 1927 8125
Awarding Body: University of Bath
Current Institution: University of Bath
Date of Award: 2010
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Cu2ZnSnS4 (CZTS), being related to the highly successful Cu(In,Ga)(S,Se)2, and CuInS2 materials, is a promising candidate for thin film photovoltaic devices. It has the advantage that it contains no rare or expensive elements, and therefore has cost-reduction potential for commercial systems. A two-stage process for fabrication of CZTS films is presented, which consists of sequential electrodeposition of Cu, Sn and Zn layers followed by a heat treatment in the presence of S vapour (‘sulfurisation’). Electrodeposition conditions are developed to give uniform Cu|Sn|Cu|Zn precursors of controlled morphology and composition, by the use of a rotating disc electrode system. Precursors are converted to CZTS by sulfurisation in the presence of elemental S, using a rapid thermal processing system (RTP). The sulfurisation reaction is studied by XRD and Raman spectroscopy as a function of temperature and at short time intervals, and a sequence of reactions is derived for the formation of CZTS. It is shown that the sulfurisation reaction occurs within minutes above 500°C. A model is presented for film formation when rapid heating rates are employed. The effects of sulfurisation time, background pressure and precursor composition on the morphological and structural properties of the CZTS films are investigated. Observations of grain size changes and compositional modification are made and explained in terms of the likely secondary phases present. The opto-electronic properties of the CZTS films are measured using a photoelectrochemical technique. Changes in the external quantum efficiency and band gap are studied as a function of sulfurisation parameters and precursor composition. After crystallisation of the CZTS phase during sulfurisation, the photocurrent obtained from the films continued to rise upon heating in the absence of S, which is explained by changes in acceptor concentration. Large shifts in the band gap are seen, and some proposals are made to explain the behaviour. The observations are discussed in the context of the particular compositions and sulfurisation conditions routinely used in the CZTS literature, and recommendations are made for further work.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.527514  DOI: Not available
Share: