Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527044
Title: Extending the measurement range of high-speed speckle pattern interferometry
Author: Wu, Tao
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 2009
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
A digital speckle pattern interferometer based on a complementary metal-oxide semiconductor (CMOS) camera was developed. The temporal evolution of dynamic deformation was measured using inter-frame phase stepping. A numerical and analytical investigation showed that the maximum surface velocity that can be reliably measured with inter-frame phase stepping corresponds to ±0.3 times the surface velocity at which the interferogram is sampled at the Nyquist limit (vNyq). The flexibility of the CMOS detector readout was used to identify regions of interest with full-field time-averaged measurements and then to interrogate those regions with time-resolved measurements sampled at up to 70 kHz. To increase the surface velocity measurement range, spatial phase stepping was introduced to the high-speed CMOS system. A pair of binary phase gratings introduced double-channel sensing with a fixed phase step between the two channels. The maximum surface velocity was increased to ±1.0vNyq. Sub-Nyquist theory was implemented for the dynamic measurements and the measurement range with a continuous-wave laser illumination was increased by an order of magnitude with respect to inter-frame phase stepping to ±3.0vNyq. A numerical and analytical investigation showed that with a reduced exposure, for example from pulsed laser illumination, the maximum surface velocity that can be reliably measured is ±15.9vNyq and the surface acceleration is ±253.3vNyq with the current set-up. Due to spatial variations in speckle intensity, some low-modulating and saturated pixels within the small regions of interest interrogated at up to 70 kHz could not be analysed. The nonlinear LinlogTM response of the CMOS camera was used to increase the valid measurement area on the object surface by incorporating pixels that would be below a modulation threshold or saturated if recorded with a linear CCD detector.
Supervisor: Moore, Andrew Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.527044  DOI: Not available
Share: