Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525992
Title: Estimation of long-range dependence
Author: Vivero, Oskar
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
A set of observations from a random process which exhibit correlations that decay slower than an exponential rate is regarded as long-range dependent. This phenomenon has stimulated great interest in the scientific community as it appears in a wide range of areas of knowledge. For example, this property has been observed in data pertaining to electronics, econometrics, hydrology and biomedical signals.There exist several estimation methods for finding model parameters that help explain the set of observations exhibiting long-range dependence. Among these methods, maximum likelihood is attractive, given its desirable statistical properties such as asymptotic consistency and efficiency. However, its computational complexity makes the implementation of maximum likelihood prohibitive.This thesis presents a group of computationally efficient estimators based on the maximum likelihood framework. The thesis consists of two main parts. The first part is devoted to developing a computationally efficient alternative to the maximum likelihood estimate. This alternative is based on the circulant embedding concept and it is shown to maintain the desirable statistical properties of maximum likelihood.Interesting results are obtained by analysing the circulant embedding estimate. In particular, this thesis shows that the maximum likelihood based methods are ill-conditioned; the estimators' performance will deteriorate significantly when the set of observations is corrupted by errors. The second part of this thesis focuses on developing computationally efficient estimators with improved performance under the presence of errors in the observations.
Supervisor: Heath, William Sponsor: Not available
Qualification Name: ) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.525992  DOI: Not available
Keywords: Maximum Likelihood Estimation ; Long-Range Dependence ; Regularisation
Share: