Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515013
Title: Simultaneous localisation and mapping using a single camera
Author: Williams, Brian P.
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
This thesis describes a system which is able to track the pose of a hand-held camera as it moves around a scene. The system builds a 3D map of point landmarks in the world while tracking the pose of the camera relative to this map using a process called simultaneous localisation and mapping (SLAM). To achieve real-time performance, the map must be kept sparse, but rather than observing only the mapped landmarks like previous systems, observations are made of features across the entire image. Their deviation from the predicted epipolar geometry is used to further constrain the estimated inter-frame motion and so improves the overall accuracy. The consistency of the estimation is also improved by performing the estimation in a camera-centred coordinate frame. As with any such system, tracking failure is inevitable due to occlusion or sudden motion of the camera. A relocalisation module is presented which monitors the SLAM system, detects tracking failure, and then resumes tracking as soon as the conditions have improved. This relocalisation process is achieved using a new landmark recognition algorithm which is trained on-line and provides high recall and a fast recognition time. The relocalisation module can also be used to achieve place recognition for a loop closure detection system. By taking into account both the geometry and appearance information when determining a loop closure this module is able to outperform previous loop closure detection techniques used in monocular SLAM. After recognising an overlap, the map is then corrected using a novel trajectory alignment technique that is able to cope with the inherent scale ambiguity in monocular SLAM. By incorporating all of these new techniques, the system presented can perform as a robust augmented reality system, or act as a navigation tool which could be used on a mobile robot in indoor and outdoor environments.
Supervisor: Reid, Ian D. Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.515013  DOI: Not available
Keywords: Image understanding ; Information engineering ; Robotics ; Computer Vision ; Monocular ; Simultaneous localisation and mapping ; loop closing ; relocalisation
Share: